Advertisement

Genetics of myo-Inositol Phosphate Synthesis and Accumulation

  • Victor Raboy
  • Paolo Gerbasi
Part of the Subcellular Biochemistry book series (SCBI, volume 26)

Abstract

Two cellular functions for the myo-inositol (Ins) polyphosphate esters (Ins bis-, tris-, tetrakis-, pentakis-, and hexakisphosphate or phytic acid) are prominent in the literature. These are as metabolites in phosphate and mineral storage or regulation pathways and as metabolites in signal transduction pathways (see below). A third discrete function involves the modulation of hemoglobin oxygen affinity in the avian erythrocyte (Isaacks and Harkness, 1980). Recently Ins hexa-, hepta-, and octaphosphates containing one or two pyrophosphate moieties have been identified in a number of cell types (Mayr et al., 1992; Menniti et al., 1993). They are probably synthesized from Ins pentakis- and hexakisphosphate as part of a kinase-pyrophosphatase cycle. This cycle may represent an additional discrete role for Ins phosphate metabolism as a component of “high-energy” phosphate bond metabolism.

Keywords

Phytic Acid Inositol Phosphate Retinal Degeneration Pleckstrin Homology Domain Inositol Polyphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, J. F., van Heusdan, G.P.H., Temkin, M., and Dowhan, W., 1990, The gene encoding the phosphatidylinositol transfer protein is essential for cell growth, J. Biol. Chem. 265:4711–4717.PubMedGoogle Scholar
  2. Attree, O., Olivos, I. M., Okabe, I., Bailey, L. C., Nelson, D. L., Lewis, R. A., McInnes, R. R., and Nussbaum, R. L., 1992, The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase, Nature 358:239–242.PubMedCrossRefGoogle Scholar
  3. Backer, J. M., Myers, M. G., Jr., Sun, X.-J., Chin, D. J., Shoelson, S. E., Miralpeix, M., and White, M. F., 1993, Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3′-kinase, J. Biol. Chem. 268:8204–8212.PubMedGoogle Scholar
  4. Baldi, B. G., Scott, J. J., Everard, J. D., and Loewus, F. A., 1988, Localization of constitutive phytases in lily pollen and properties of the pH 8 form, Plant Sci. 56:137–147.CrossRefGoogle Scholar
  5. Baldwin, G. S., and Zhang, Q-X, 1993, Related GAP domains in inositol polyphosphate 5-phospha-tase and the p85 subunit of phosphatidylinositol 3-kinase, Trends Biochem. Sci. 18:378–380.PubMedCrossRefGoogle Scholar
  6. Balla, T., Sim, S. S., Iida, T., Choi, K. Y., Catt, K. J., and Rhee, S. G., 1991, Agonist-induced calcium signaling is impaired in fibroblasts overproducing inositol 1,3,4,5-tetrakisphosphate, J. Biol. Chem. 266:24719–24726.PubMedGoogle Scholar
  7. Bankaitis, V. A., Johnson, L. M., and Emr, S. D., 1986, Isolation of yeast mutants defective in protein targeting to the vacuole, Proc. Natl. Acad. Sci. U.S.A. 83:9075–9079.PubMedCrossRefGoogle Scholar
  8. Bankaitis, V. A., Malehorn, D. E., Emr, S. D., and Greene, R., 1989, The Saccharomyces cere-visiae Secl4 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex, J. Cell Biol. 108:1271–1281.PubMedCrossRefGoogle Scholar
  9. Bankaitis, V. A., Aitken, J. R., Cleves, A. E., and Dowhan, W., 1990, An essential role for a phospholipid transfer protein in yeast Golgi function, Nature 347:561–562.PubMedCrossRefGoogle Scholar
  10. Beadle, G. W., 1944, An inositolless mutant strain of Neurospora and its use in bioassays, J. Biol. Chem. 156:683–689.Google Scholar
  11. Beadle, G. W., and Tatum, E. L., 1945, Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements, Am. J. Bot. 32:678–686.CrossRefGoogle Scholar
  12. Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.PubMedCrossRefGoogle Scholar
  13. Berridge, M. J., Downes, C. P., and Hanley, M. R., 1989, Neural and developmental actions of lithium: A unifying hypothesis, Cell 59:411–419.PubMedCrossRefGoogle Scholar
  14. Bianchetti, R., and Sartirana, M. L., 1967, The mechanism of repression by inorganic phosphate of phytase synthesis in the germinating wheat embryo, Biochim. Biophys. Acta 145:485–490.PubMedGoogle Scholar
  15. Biswas, B. B., Biswas, S., Chakrabarti, S., and De, B. P., 1978, A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds, in Cyclitols and Phospho-inositides (W. W. Wells and F. Eisenberg, Jr., eds.), pp. 57–68, Academic Press, New York.Google Scholar
  16. Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G., and Pak, W. L., 1988, Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction, Cell 54:723–733.PubMedCrossRefGoogle Scholar
  17. Bollmann, O., Strother, S., and Hoffman-Ostenhoff, O., 1980, The enzymes involved in the synthesis of phytic acid in Lemna gibba, Mol. Cell. Biol. 30:171–175.Google Scholar
  18. Caldwell, K. K., Lips, D. L., Bansal, V. S., and Majerus, P. W., 1991, Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate, J. Biol. Chem. 266:18378–18386.PubMedGoogle Scholar
  19. Camilli, A., Goldfine, H., and Portnoy, D. A., 1991, Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent, J. Exp. Med. 173:751–754.PubMedCrossRefGoogle Scholar
  20. Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S., 1991, Oncogenes and signal transduction, Cell 64:281–302.PubMedCrossRefGoogle Scholar
  21. Carman, G. M., and Henry, S. A., 1989, Phospholipid biosynthesis in yeast, Annu. Rev. Biochem. 58:635–669.PubMedCrossRefGoogle Scholar
  22. Chattaway, J. A., Drøbak, B. K., Watkins, P.A.C., Dawson, A. P., Letcher, A. J., Stephens, L. R., and Irvine, R. F., 1992, An inositol 1,4,5-trisphosphate-6-kinase activity in pea roots, Planta 187:542–545.CrossRefGoogle Scholar
  23. Choi, K. Y., Kim, H. K., Lee, S. Y., Moon, K. H., Sim, S. S., Kim, J. W., Chung, H. K., and Rhee, S. G., 1990, Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase, Science 248:64–66.PubMedCrossRefGoogle Scholar
  24. Clark, J. D., Lin, L-L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, L. Y., Milona, N., and Knopf, J. L., 1991, A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP, Cell 65:1043–1051.PubMedCrossRefGoogle Scholar
  25. Cosgrove, D. J., 1980, Inositol Phosphates: Their Chemistry, Biochemistry and Physiology, Elsevier Scientific, Amsterdam.Google Scholar
  26. Culbertson, M. R., and Henry, S.A., 1975, Inositol-requiring mutants of Saccharomyces cerevisiae, Genetics 80:23–40.PubMedGoogle Scholar
  27. Dawson, R.M.C., and Clarke, N., 1972, D-myo-Inositol l:2-cyclic phosphate 2-phosphohydrolase, Biochem. J. 127:113–118.PubMedGoogle Scholar
  28. Dawson, R.M.C., and Clarke, N. G., 1973, A comparison of D-inositol 1:2-cyclic phosphate 2-phosphohydrolase with other phosphodiesterases of kidney, Biochem. J. 134:59–67.PubMedGoogle Scholar
  29. Dawson, R.M.C., Freinkel, N., Jungalwala, F. B., and Clarke, N., 1971, The enzymatic formation of myo-inositol 1:2-cyclic phosphate from phosphatidylinositol, Biochem. J. 122:605–607.PubMedGoogle Scholar
  30. Dean Johnson, M., 1994, The Arabidopsis thaliana myo-inositol 1-phosphate synthase (EC 5.5.1.4), Plant Physiol. 105:1023–1024.CrossRefGoogle Scholar
  31. Dean-Johnson, M., and Henry, S.A., 1989, Biosynthesis of inositol in yeast, Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus, J. Biol. Chem. 264:1274–1283.PubMedGoogle Scholar
  32. Dean Johnson, M., and Sussex, I. M., 1995, lL-myo-inositol 1-phosphate synthase from Arabidopsis thaliana, Plant Physiol. 107:613–619.Google Scholar
  33. Dickeson, S. K., Lim, C. N., Schuyler, G. T., Dalton, T. P., Helmkamp, G. M., Jr., Yarbrough, L. R., 1989, Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein, J. Biol. Chem. 264:16557–16564.PubMedGoogle Scholar
  34. Dickeson, S. K., Helmkamp, G. M., Jr., and Yarbrough, L. R., 1994, Sequence of a human cDNA encoding phosphatidylinositol transfer protein and occurrence of a related sequence in widely divergent eukaryotes, Gene 142:301–305.PubMedCrossRefGoogle Scholar
  35. Diehl, R. E., Whiting, P., Potter, J., Gee, N., Ragan, C. I., Linemeyer, D., Schoepfer, R., Bennet, C., and Dixon, R.A.F. 1990, Cloning and expression of bovine brain inositol monophos-phatase, J. Biol. Chem. 265:5946–5949.PubMedGoogle Scholar
  36. Dietz, M., and Albersheim, P., 1965, The enzymatic phosphorylation of myo-inositol, Biochem. Biophys. Res. Commun. 19:598–603.PubMedCrossRefGoogle Scholar
  37. Divecha, N., Banfić, H., and Irvine, R. F., 1993, Inositides and the nucleus and inositides in the nucleus, Cell 74:405–407.PubMedCrossRefGoogle Scholar
  38. Dixon, J. F., and Hokin, F. E., 1987, Inositol 1,2-cyclic 4,5-trisphosphate concentration relative to inositol 1,4,5-trisphosphate in pancreatic minilobules on stimulation with carbamylcholine in the absence of lithium: Possible role as a second messenger in long-but not short-term responses, J. Biol. Chem. 262:13892–13895.PubMedGoogle Scholar
  39. Dmitrieva, M. I., and Sobolev, A.M., 1984, Mobilization of phytin in castor bean during germination, Soviet Plant Physiol. 31:1028–1035.Google Scholar
  40. Donahue, T. F., and Henry, S. A., 1981a, Inositol mutants of Saccharomyces cerevisiae: Mapping the inol locus and characterizing alleles of the inol, ino2, and ino4 loci, Genetics 98:491–503.PubMedGoogle Scholar
  41. Donahue, T. F., and Henry, S. A., 1981b, myo-Inositol-1-phosphate synthase, Characteristics of the enzyme and identification of its structural gene in yeast, J. Biol. Chem. 256:7077–7085.PubMedGoogle Scholar
  42. Downes, C. P., and Carter, A. N., 1991, Phosphoinositide 3-kinase: A new effector in signal transduction?, Cellular Signalling 3:501–513.PubMedCrossRefGoogle Scholar
  43. Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:697–712.PubMedGoogle Scholar
  44. Ehrlich, K. C., Montalbano, B. G., Mullaney, E. J., Dischinger, H. C., Jr., and Ullah, A.H.J., 1993, Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum), Biochem. Biophys. Res. Commun. 195:53–57.PubMedCrossRefGoogle Scholar
  45. English, P. D., Dietz, M., and Albersheim, P., 1966, Myoinositol kinase: Partial purification and identification of product, Science 151:198–199.PubMedCrossRefGoogle Scholar
  46. Erdman, J. W., 1981, Bioavailability of trace minerals from cereals and legumes, Cereal Chem. 58:21–26.Google Scholar
  47. Escobedo, J. A., Navankasattusas, S., Kavanaugh, W. M., Milfay, D., Fried, V. A., and Williams, L. T., 1991, cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor, Cell 65:75–82.PubMedCrossRefGoogle Scholar
  48. Estevez, F., Pulford, D., Stark, M.J.R., Crater, A. N., and Downes, C. P., 1994, Inositol trisphosp-hate metabolism in Saccharomyces cerevisiae: Identification, purification and properties of inositol 1,4,5-trisphosphate 6-kinase, Biochem. J. 302:709–716.PubMedGoogle Scholar
  49. Fitzgibbon, J., Pilz, A., Gayther, S., Appukuttan, B., Dulai, K. S., Dalhanty, J. D. A., Helmkamp, G. M., Jr., Yarbrough, L. R., and Hunt, D. M., 1994, Localization of the gene encoding human phosphatidylinositol transfer protein (PITPN) to 17p 13.3: A gene showing homology to the Drosophila retinal degeneration B gene (rdgB), Cytogenet. Cell. Genet. 67:205–207.PubMedCrossRefGoogle Scholar
  50. Flanagan, C. A., Schnieders, E. A., Emerick, A. W., Kunisawa, R., Admon, A., and Thorner, J., 1993, Phosphatidylinositol 4-kinase: Gene structure and requirement for yeast cell viability, Science 262:1444–1448.PubMedCrossRefGoogle Scholar
  51. Foster, P. S., Gesini, E., Claudianos, C., Hopkinson, K. C., and Denborough, M. A., 1989, Inositol 1,4,5-trisphosphate phosphatase deficiency and malignant hyperpyrexia in swine, Lancet 8655:124–127.CrossRefGoogle Scholar
  52. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature 342:32–38.PubMedCrossRefGoogle Scholar
  53. Gee, N. S., Ragan, C. I., Watling, K. J., Aspley, S., Jackson, R. G., Reid, G. G., Gani, D., and Shute, J. K., 1988, The purification and properties of myo-inositol monophosphatase from bovine brain, Biochem. J. 249:883–889.PubMedGoogle Scholar
  54. Gibson, D. M., and Ullah, A.B.J., 1990, Phytases and their action on phytic acid, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 77–92, Wiley-Liss, New York.Google Scholar
  55. Glomset, J. A., Gelb, M. H., and Farnsworth, C.S., 1990, Prenyl proteins in eukaryotic cells: A new type of membrane anchor, Trends Biochem. Sci. 15:139–142.PubMedCrossRefGoogle Scholar
  56. Graf, E., and Eaton, J. W., 1993, Suppression of colonic cancer by dietary phytic acid. Nutr. Cancer 19:11–19.PubMedCrossRefGoogle Scholar
  57. Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.PubMedGoogle Scholar
  58. Harlan, J. E., Hajduk, P. J., Yoon, H. S., and Fesik, S. W., 1994, Peckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate, Nature 371:168–170.PubMedCrossRefGoogle Scholar
  59. Harris, W. A., and Stark, W. S., 1977, Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process, J. Gen. Physiol. 69:261–291.PubMedCrossRefGoogle Scholar
  60. Hawkins, P. T., Poyner, D. R., Jackson, T. R., Letcher, A. J., Lander, D. A., and Irvine, R. F., 1993, Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hecakisphosphate, Biochem. J. 294:929–934.PubMedGoogle Scholar
  61. Hay, J. C., and Martin, T.F.J., 1993, Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion, Nature 366:572–575.PubMedCrossRefGoogle Scholar
  62. Herman, P. K., and Emr, S. D., 1990, Characterization for VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae, Mol. Cell. Biol. 10:6742–6754.PubMedGoogle Scholar
  63. Herman, P. K., Stack, J. H., and Emr, S. D., 1991, A genetic and structural analysis of the yeast Vps15 protein kinase: Evidence for a direct role of Vps15p in vacuolar protein delivery, EMBO J. 10:4049–4060.PubMedGoogle Scholar
  64. Heslop, J. P., Irvine, R. F., Tashjian, A. H., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119:395–401.PubMedGoogle Scholar
  65. Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., and Waterfield, M. D., 1992, Phosphatidylinositol 3-kinase: Structure and expression of the 110 kd catalytic subunit, Cell 70:419–429.PubMedCrossRefGoogle Scholar
  66. Hirsch, J. P., and Henry, S. A., 1986, Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis, Mol. Cell. Biol. 6:3320–3328.PubMedGoogle Scholar
  67. Hosaka, K., Nikawa, J., Kodaki, T., and Yamashita, S., 1992, A dominant mutation that alters the regulation of INO1 Expression in Saccharomyces cerevisiae, J. Biochem. 111:352–358.PubMedGoogle Scholar
  68. Hoshizaki, D. K., Hill, J. E., and Henry, S. A., 1990, The S. cerevisiae Ino4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes, J. Biol. Chem. 265:4736–4745.PubMedGoogle Scholar
  69. Hotta, Y., and Benzer, S., 1970, Genetic dissection of the Drosophila nervous system by means of mosaics, Proc. Natl. Acad. Sci. U.S.A. 67:1156–1163.PubMedCrossRefGoogle Scholar
  70. Irvine, R. F., 1992, Inositol phosphates and Ca2+ entry: Toward a proliferation or a simplification? FASEB J. 6:3085–3091.PubMedGoogle Scholar
  71. Isaaks, R. E., and Harkness, D. R., 1980, Erythrocyte organic phosphates and hemoglobin function in birds, reptiles, and fishes, Amer. Zool. 20:115–129.Google Scholar
  72. Jänne, P. A., Dutra, A. S., Dracopoli, N. C., Chamas, L. R., Puck, J. M., and Nussbaum, R. L., 1994, Localization of the 75-kDa inositol polyphosphate-5-phosphatase (INPP5B) to human chromosome band lp34, Cytogenet. Cell Genet. 66:164–166.PubMedCrossRefGoogle Scholar
  73. Kao, F.-T., and Puck, T. T., 1968, Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells, Proc. Natl. Acad. Sci. U.S.A. 60:1275–1281.PubMedCrossRefGoogle Scholar
  74. Klig, L. S., and Henry, S. A., 1984, Isolation of the yeast INO1 gene: Located on an autonomously replicating plasmid, the gene is fully regulated, Proc. Natl. Acad. Sci. U.S.A. 81:3816–3820.PubMedCrossRefGoogle Scholar
  75. Kunz, J., Henriquez, R., Schneider, U., Deuter-Reinhard, M., Movva, N. R., and Hall, M. N., 1993, Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression, Cell 73:585–596.PubMedCrossRefGoogle Scholar
  76. Laxminarayan, K. M., Chan, B. K., Tetaz, T., Bird, P. I., and Mitchell, C. A., 1994, Characterization of a cDNA encoding the 43-kDa membrane-associated inositol-polyphosphate 5-phospha-tase, J. Biol. Chem. 269:17305–17310.PubMedGoogle Scholar
  77. Leonis, M. A., and Silbert, D. F., 1993, Characterization of a second hamster lung fibroblast mutant with defects in phosphatidylinositol-specific phospholipase C., J. Biol. Chem. 268:9416–9424.PubMedGoogle Scholar
  78. Lips, D. L., Majerus, P. W., Gorga, F. R., Young, A. T., and Benjamin, T. L., 1989, Phosphatidylinositol 3-phosphate is present in normal and transformed fibroblasts and is resistant to hydrolysis by bovine brain phospholipase C II, J. Biol. Chem. 264:8759–8763.PubMedGoogle Scholar
  79. Loewus, F. A., 1990, Inositol biosynthesis, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 13–19, Wiley-Liss, New York.Google Scholar
  80. Loewus, F. A., Everard, J. D., and Young, K. A., 1990, Inositol metabolism: Precursor role and breakdown, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 21–45, Wiley-Liss, New York.Google Scholar
  81. Lopes, J. M., Hirsch, J. P., Chorgo, P. A., Schulze, K. L., and Henry, S. A., 1991, Analysis of sequences involved in the Ino1 promoter that are involved in its regulation by phospholipid precursors, Nucleic Acids Res. 19:1687–1693.PubMedCrossRefGoogle Scholar
  82. Lopes, J. M., Schulze, K. L., Yates, J. W., Hirsch, J. P., and Henry, S. A., 1993, The Inol promoter of Saccharomyces cerevisiae includes an upstream repressor sequence (URS1) common to a diverse set of yeast genes, J. Bacteriol. 175:4235–4238.PubMedGoogle Scholar
  83. Lott, J.N.A., 1984, Accumulation of seed reserves of phosphorus and other minerals, in Seed Physiology, (D. R. Murray, ed.), pp. 139–166, Academic Press, New York.Google Scholar
  84. Majerus, P. W., 1992, Inositol phosphate biochemistry, Annu. Rev. Biochem. 61:225–250.PubMedCrossRefGoogle Scholar
  85. Majerus, P. W., Ross, T. S., Cunningham, T. W., Caldwell, K. K., Jefferson, A. B., and Bansal, V. S., 1990, Recent insights in phosphatidylinositol signaling, Cell 63:459–465.PubMedCrossRefGoogle Scholar
  86. Matzaris, M., Jackson, S. P., Laxminarayan, K. M., Speed, C. J., and Mitchell, C. A., 1994, Identification and characterization of the phosphatidylinositol-(4,5)-bisphosphate 5-phosphatase in human platelets, J. Biol. Chem. 269:3397–3402.PubMedGoogle Scholar
  87. Mayer, B. J., Ren, R., Clark, K. L., and Baltimore, D., 1993, A putative modular domain present in diverse signaling proteins, Cell 73:629–630.PubMedCrossRefGoogle Scholar
  88. Mayr, G. W., Radenberg, T., Thiel, U., Vogel, G., and Stephens, L. R., 1992, Phosphoinositol diphosphates: Non-enzymic formation in vitro and occurrence in vivo in the cellular slime mold Dictyostelium, Carbohydrate Res. 234:247–262.CrossRefGoogle Scholar
  89. McAllister, G., Whiting, P., Hammond, E. A., Knowles, M. R., Atack, J. R., Bailey, F. J., Maigetter, R., and Ragan, C. I., 1992, cDNA cloning of human and rat brain myo-inositol monophosphatase, Biochem. J. 284:749–754.PubMedGoogle Scholar
  90. McCance, R. A., and Widdowson, E. M., 1935, Phytic acid in human nutrition, Biochem. J. 29:42694–42699.Google Scholar
  91. Menniti, F. S., Miller, R. N., Putney, J. W. Jr., and Shears, S. B., 1993, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells, J. Biol. Chem. 268:3850–3856.PubMedGoogle Scholar
  92. Mignery, G. A., Südhof, T. C., Takei, K., and Camilli, P. D., 1989, Putative receptor of inositol 1,4,5-trisphosphate similar to ryanodine receptor, Nature 342:192–195.PubMedCrossRefGoogle Scholar
  93. Mignery, G. A., Newton, C. L., Archer, B. T. III, and Südhof, T. C., 1990, Structure and expression of the rat inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 265:12679–12685.PubMedGoogle Scholar
  94. Mullaney, E. J., Gibson, D. M., and Ullah, A.H.J., 1991, Positive identification of a lambda gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification, Appl. Microbiol. Biotechnol. 35:611–614.PubMedCrossRefGoogle Scholar
  95. Musacchio, A., Gibson, T., Rice, P., Thompson, J., and Saraste, M., 1993, The PH domain: A common piece in the structural patchwork of signalling proteins, Trends Biochem. Sci. 18:343–348.PubMedCrossRefGoogle Scholar
  96. Nikawa, J., and Yamashita, S., 1982, Yeast mutant defective in synthesis of phosphatidylinositol, Eur. J. Biochem. 125:445–451.PubMedCrossRefGoogle Scholar
  97. Nikawa, J., and Yamashita, S., 1984, Molecular cloning of the gene encoding CDPdiacylglycerol-inositol 3-phosphatidyl transferase in Saccharomyces cerevisiae, Eur. J. Biochem. 143:251–256.PubMedCrossRefGoogle Scholar
  98. Nikoloff, D. M., McGraw, P., and Henry, S. A., 1992, The Ino1 gene of Saccharomyces cerevisiae encodes a helilx-loop-helix protein that is required for activation of phospholipid biosynthesis, Nucleic Acids Res. 20:3253.PubMedCrossRefGoogle Scholar
  99. Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21:205–215.PubMedCrossRefGoogle Scholar
  100. Ogawa, M., Tanaka, K., and Kasai, Z., 1979, Accumulation of phosphorus, magnesium and potassium in developing rice grains followed by electron microprobe X-ray analysis focusing on the aleurone layer, Plant Cell Physiol. 20:19–27.Google Scholar
  101. Otsu, M., Hiles, I., Gout, I., Fry, M. J., Ruiz-Larrea, F., Panayotou, G., Thompson, A., Dhand, R., Hsuan, J., Totty, N., Smith, A. D., Morgan, S. J., Courtneidge, S. A., Parker, P. J., and Waterfield, M. D., 1991, Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase, Cell 65:91–104.PubMedCrossRefGoogle Scholar
  102. Pak, W. L., Grossfield, J., and Arnold, K., 1970, Mutants of the visual pathway of Drosophila melanogastor, Nature 227:518–520.PubMedCrossRefGoogle Scholar
  103. Paris, S., Chambard, J.-C., and Pouysségur, J., 1987, Coupling between phosphoinositide breakdown and early mitogenic events in fibroblasts, J. Biol. Chem. 262:1977–1983.PubMedGoogle Scholar
  104. Pen, J., Verwoerd, T. C., van Paridon, P. A., Beudeker, R. F., van den Elzen, P.J.M., Geerse, K., van der Klis, J. D., Versteegh, H.A.J., van Ooyen, A.J.J., and Hoekema, A., 1993, Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization, Bioltechnology 11:811–814.CrossRefGoogle Scholar
  105. Pernollet, J.-C., 1978, Protein bodies of seeds: Ultrastructure, biochemistry, biosynthesis and degradation, Phytochemistry 17:1473–1480.CrossRefGoogle Scholar
  106. Phillippy, B. Q., Ullah, A.H.J., and Ehrlich, K. C., 1994, Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds, J. Biol. Chem. 269:28393–28399.PubMedGoogle Scholar
  107. Piddington, C. S., Houston, C. S., Paloheimo, M., Cantrell, M., Miettinen-Oinonen, A., Nevalainen, H., and Rambosek, J., 1993, The cloning and sequencing of the genes encoding phytase (phy) and pH 25-optimum acid phosphatase (aph) from Aspergillus niger var. awamori, Gene 133:55–62.PubMedCrossRefGoogle Scholar
  108. Pouysségur, J., Sardet, C., Franchi, A., L’Allemain, G., and Paris, S., 1984, A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH, Proc. Natl. Acad. Sci. USA 81:4833–4837.PubMedCrossRefGoogle Scholar
  109. Raboy, V., 1990, The biochemistry and genetics of phytic acid synthesis, in Inositol Metabolism in Plants (D. J. Moore, W. Boss, and F. A. Loewus, eds.), pp. 52–73, Alan R. Liss, New York.Google Scholar
  110. Raboy, V., and Dickinson, D. B., 1984, Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc, Plant Physiol. 75:1094–1098.PubMedCrossRefGoogle Scholar
  111. Raboy, V., Dickinson, D. B., and Neuffer, M. G., 1990, A survey of maize mutants for variation in phytic acid, Maydica 35:383–390.Google Scholar
  112. Raboy, V., Young, K., and Gerbasi, P., 1994, Maize low phytic acid (Lpa) mutants, Abstracts: 4th International Congress of Plant Molecular Biology: Abs. No. 1827.Google Scholar
  113. Rath, H. M., Doyle, G. A. R., and Silbert, D. F., 1989, Hamster fibroblasts defective in thrombin-induced mitogenesis, J. Biol. Chem. 264:13387–13390.PubMedGoogle Scholar
  114. Rath, H. M., Fee, J. A., Rhee, S. G., and Silbert, D. F., 1990, Characterization of phosphatidylinositol-specific phospholipase C defects associated with thrombin-induced mitogenesis, J. Biol. Chem. 265:3080–3087.PubMedGoogle Scholar
  115. Rhee, S. G., Suh, P.G., Ryu, S.-H., and Lee, S. Y., 1989, Studies of inositol phospholipid-specific phospholipase C., Science 244:546–550.PubMedCrossRefGoogle Scholar
  116. Robinson, J. S., Klionsky, D. J., Banta, L. M., and Emr, S. D., 1988, Protein sorting in Sac-charomyces cerevisiae: Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases, Mol. Cell. Biol. 8:4936–4948.PubMedGoogle Scholar
  117. Ross, T. S., Tait, J. F., and Majerus, P. W., 1990, Identity of inositol 1,2-cyclic phosphate 2-phos-phoydrolase with lipocortin III, Science 248:605–607.PubMedCrossRefGoogle Scholar
  118. Ross, T. S., Jefferson, A. B., Mitchell, C. A., and Majerus, P. W., 1991a, Cloning and expression of human 75-kDa inositol polyphosphate-5-phosphatase, J. Biol. Chem. 266:20283–20289.PubMedGoogle Scholar
  119. Ross, T. S., Whiteley, B., Graham, R. A., and Majerus, P. W., 1991b, Cyclic hydrolase-transfected 3T3 cells have low levels of inositol 1,2-cyclic phosphate and reach confluence at low density, J. Biol. Chem. 266:9086–9092.PubMedGoogle Scholar
  120. Sartirana, M. A., and Bianchetti, R., 1967, The effects of phosphate on the development of phytase in the wheat embryo, Physiol. Plant. 20:1066–1075.CrossRefGoogle Scholar
  121. Schu, P. V., Takegawa, K., Fry, M. J., Stack, J. H., Waterfield, M. D., and Emr, S. D., 1993, Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting, Science 260:88–91.PubMedCrossRefGoogle Scholar
  122. Serunian, L. A., Haber, M. T., Fukui, T., Kim, J. W., Rhee, S. G., Lowenstein, J. M., and Cantley, L. C., 1989, Polyphosphoinositides produced by the phosphatidylinositol 3-kinase are poor substrates for phospholipase C from rat liver and bovine brain, J. Biol. Chem. 264:17809–17815.PubMedGoogle Scholar
  123. Skinner, H. B., Alb, J. G., Jr., Whitters, E. A., Helmkamp, G. M., Jr., and Bankaitis, V. A., 1993, Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast Sec14 gene product, EMBO J. 12:4775–4784.PubMedGoogle Scholar
  124. Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J., 1991, Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell 65:83–90.PubMedCrossRefGoogle Scholar
  125. Smart, C. C., and Fleming, A. J., 1993, A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic acid induced morphogenic response in Spirodela polyrrhiza, Plant J. 4:279–293.PubMedCrossRefGoogle Scholar
  126. Stack, J. H., Herman, P. K., Schu, P. V., and Emr, S. D., 1993, A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole, EMBO J. 12:2195–2204.PubMedGoogle Scholar
  127. Stark, W. S., Chen, D.-M., Johnson, M. A., and Frayer, K. L., 1983, The rdgB gene of Drosophila: Retinal degeneration in different alleles and inhibition by norpA, J. Insect Physiol. 29:123–131.CrossRefGoogle Scholar
  128. Stephens, L. R., and Irvine, R. F., 1990, Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostellium, Nature 346:580–583.PubMedCrossRefGoogle Scholar
  129. Stephens, L. R., Kay, R. R., and Irvine, R. F., 1990, A myo-inositol D-3 hydroxykinase activity in Dictyostelium, Biochem. J. 272:201–210.PubMedGoogle Scholar
  130. Stephens, L. R., Hawkins, P. T., Stanley, A. F., Moore, T., Poyner, D. R., Morris, P. J., Hanley, M. R., Kay, R. R., and Irvine, R. F., 1991, myo-Inositol pentakisphosphates: Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate, Biochem. J. 275:485–499.PubMedGoogle Scholar
  131. Stephens, L. R., Jackson, T. R., and Hawkins, P. T., 1993a, Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system?, Biochim. Bio-phys. Acta 1179:27–75.Google Scholar
  132. Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T. R., Hawkins, P. T., and Mayr, G. W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphos-phate(s), J. Biol. Chem. 268:4009–4015.PubMedGoogle Scholar
  133. Südhof, T. C., Newton, C. L., Archer, B. T., III, Ushkaryov, Y. A., and Mignery, G. A., 1991, Structure of a novel InsP3 receptor, EMBO J. 10:3199–3206.PubMedGoogle Scholar
  134. Sylvia, V., Curtin, G., Norman, J., Stec, J., and Busbee, D., 1988, Activation of a low specific activity form of DNA polymerase α by inositol-1,4-bisphosphate, Cell 54:651–658.PubMedCrossRefGoogle Scholar
  135. Talmage, D. A., Freund, R., Young, A. T., Dahl, J., Dawe, C. J., and Benjamin, T. L., 1989, Phosphorylation of middle T by pp60c-src: A switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis, Cell 59:55–65.PubMedCrossRefGoogle Scholar
  136. Theibert, A. B., Estevez, V. A., Ferris, C. D., Danoff, S. K., Barrow, R. K., Prestwich, G. D., and Snyder, S. H., 1991, Inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate receptor proteins: Isolation and characterization from rat brain, Proc. Natl. Acad. Sci. U.S.A. 88:3165–3169.PubMedCrossRefGoogle Scholar
  137. Toyoshima, S., Matsumoto, N., Wang, P., Inoue, H., Yoshioka, T., Hotta, Y., and Osawa, T., 1990, Purification and partial amino acid sequences of phosphoinositide-specific phospholipase C of Drosophila eye, J. Biol. Chem. 265:14842–14848.PubMedGoogle Scholar
  138. Trewavas, A., and Gilroy, S., 1991, Signal transduction in plant cells, Trends Genet. 7:356–361.PubMedGoogle Scholar
  139. Tyers, M., Rachubinski, R. A., Stewart, M. I., Varrichio, A. M., Shorr, R.G.L., Haslam, R. J., and Harley, C. B., 1988, Molecular cloning and expression of the major protein kinase C substrate of platelets, Nature 333:470–473.PubMedCrossRefGoogle Scholar
  140. van Hartingsveldt, W., van Zeijl, C.M.J., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M.E.G., Luiten, R.G.M., van Paridon, P. A., Selten, G.C.M., Veenstra, A. E., van Gorcom, R.F.M., and van den Hondel, C.A.M.J.J., 1993, Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger, Gene 127:87–94.PubMedCrossRefGoogle Scholar
  141. Vihtelic, T. S., Goebl, M., Milligan, S., O’Tousa, J. E., and Hyde, D. R., 1993, Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein, J. Cell Biol. 122:1013–1022.PubMedCrossRefGoogle Scholar
  142. Voglmaier, S. M., Keen, J. H., Murphy, J., Ferris, C. D., Prestwich, G. D., Snyder, S. H., and Theibert, A. B., 1992, Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2, Biochem. Biophys. Res. Commun. 187:158–163.PubMedCrossRefGoogle Scholar
  143. Welters, P., Takegawa, K., Emr, S. D., and Chrispeels, M. J., 1994, ATVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain, Proc. Natl. Acad. Sci. U.S.A. 91:11398–11402.PubMedCrossRefGoogle Scholar
  144. White, M. J., Hirsch, J. P., and Henry, S. A., 1991, The Opil gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper, J. Biol. Chem. 266:863–872.PubMedGoogle Scholar
  145. Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L., 1988, Type I phospha-tidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature 332:644–646.PubMedCrossRefGoogle Scholar
  146. Williams, S. G., 1971, Biosynthesis of inositol by inositol-less mutants of Neurospora crassa, Aust. J. Biol. Sci. 24:1181–1188.Google Scholar
  147. Woodward, C., Alcorta, E., and Carlson, J., 1992, The rdgB gene of Drosophila: A link between vision and olfaction, J. Neurogenetics 8:17–31.CrossRefGoogle Scholar
  148. Wreggett, K. A., 1992, Inositol monophosphatase is a highly conserved enzyme having localized structural similarity to both glycerol 3-phosphate dehydrogenase and haemoglobin, Biochem. J. 286:147–152.PubMedGoogle Scholar
  149. Yagisawa, H., Hirata, M., Kanematsu, T., Watanabe, Y., Ozaki, S., Sakuma, K., Tanaka, H., Yabuta, N., Kamata, H., Hirata, H., and Nojima, H., 1994, Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1, J. Biol. Chem. 269:20179–20188.PubMedGoogle Scholar
  150. Yoakim, M. W., Hou, W., Liu, Y., Carpenter, C. L., Kapeller, R., and Schaffhausen, B. S., 1992, Interactions of Polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol 3-kinase, J. Virol. 66:5485–5491.PubMedGoogle Scholar
  151. Yoakim, M., Hou, W., Songyang, Z., Liu, Y., Cantley, L., and Schaffhausen, B., 1994, Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity, Mol. Cell. Biol. 14:5929–5938.PubMedGoogle Scholar
  152. Yokoo, T., Matsui, Y., Yagisawa, H., Nojima, H., Uno, I., and Tohe, A., 1993, The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae, is important for cell growth, Proc. Natl. Acad. Sci. U.S.A. 90:1804–1808.CrossRefGoogle Scholar
  153. York, J. D., and Majerus, P. W., 1990, Isolation and heterologous expression of a cDNA encoding bovine inositol polyphosphate 1-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 87:9548–9552.PubMedCrossRefGoogle Scholar
  154. York, J. D., and Majerus, P. W., 1994, Nuclear phosphatidylinositols decrease during S-phase of the cell cycle of HeLa cells, J. Biol. Chem. 269:7847–7850.PubMedGoogle Scholar
  155. York, J. D., Veile, R. A., Donis-Keller, H., and Majerus, P. W., 1993, Cloning, heterologous expression, and chromosomal localization of human inositol polyphosphate 1-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 90:5833–5837.PubMedCrossRefGoogle Scholar
  156. York, J. D., Saffitz, J. E., and Majerus, P. W., 1994, Inositol polyphosphate 1-phosphatase is present in the nucleus and inhibits DNA synthesis, J. Biol. Chem. 269:19992–19999.PubMedGoogle Scholar
  157. Yoshikawa, S., Tanimura, T., Miyawaki, A., Nakamura, M., Yuzaki, M., Furuichi, T., and Miko-shiba, K., 1992, Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster, J. Biol. Chem. 267:16613–16619.PubMedGoogle Scholar
  158. Yoshioka, T., Inoue, H., and Hotta, Y., 1985, Absence of phosphatidylinositol phosphodiesterase in the head of a Drosophila visual mutant, norpA (no receptor potential A), J. Biochem. 97:1251–1254.Google Scholar
  159. Zhang, X., Jefferson, A. B., Auethavekiat, V., and Majerus, P. W., 1995, The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 92:4853–4856.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Victor Raboy
    • 1
  • Paolo Gerbasi
    • 1
  1. 1.USDA-ARS Range Weeds and Cereals Research UnitMontana State UniversityBozemanUSA

Personalised recommendations