Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 26))

Abstract

Two cellular functions for the myo-inositol (Ins) polyphosphate esters (Ins bis-, tris-, tetrakis-, pentakis-, and hexakisphosphate or phytic acid) are prominent in the literature. These are as metabolites in phosphate and mineral storage or regulation pathways and as metabolites in signal transduction pathways (see below). A third discrete function involves the modulation of hemoglobin oxygen affinity in the avian erythrocyte (Isaacks and Harkness, 1980). Recently Ins hexa-, hepta-, and octaphosphates containing one or two pyrophosphate moieties have been identified in a number of cell types (Mayr et al., 1992; Menniti et al., 1993). They are probably synthesized from Ins pentakis- and hexakisphosphate as part of a kinase-pyrophosphatase cycle. This cycle may represent an additional discrete role for Ins phosphate metabolism as a component of “high-energy” phosphate bond metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J. F., van Heusdan, G.P.H., Temkin, M., and Dowhan, W., 1990, The gene encoding the phosphatidylinositol transfer protein is essential for cell growth, J. Biol. Chem. 265:4711–4717.

    PubMed  CAS  Google Scholar 

  • Attree, O., Olivos, I. M., Okabe, I., Bailey, L. C., Nelson, D. L., Lewis, R. A., McInnes, R. R., and Nussbaum, R. L., 1992, The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase, Nature 358:239–242.

    Article  PubMed  CAS  Google Scholar 

  • Backer, J. M., Myers, M. G., Jr., Sun, X.-J., Chin, D. J., Shoelson, S. E., Miralpeix, M., and White, M. F., 1993, Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3′-kinase, J. Biol. Chem. 268:8204–8212.

    PubMed  CAS  Google Scholar 

  • Baldi, B. G., Scott, J. J., Everard, J. D., and Loewus, F. A., 1988, Localization of constitutive phytases in lily pollen and properties of the pH 8 form, Plant Sci. 56:137–147.

    Article  CAS  Google Scholar 

  • Baldwin, G. S., and Zhang, Q-X, 1993, Related GAP domains in inositol polyphosphate 5-phospha-tase and the p85 subunit of phosphatidylinositol 3-kinase, Trends Biochem. Sci. 18:378–380.

    Article  PubMed  CAS  Google Scholar 

  • Balla, T., Sim, S. S., Iida, T., Choi, K. Y., Catt, K. J., and Rhee, S. G., 1991, Agonist-induced calcium signaling is impaired in fibroblasts overproducing inositol 1,3,4,5-tetrakisphosphate, J. Biol. Chem. 266:24719–24726.

    PubMed  CAS  Google Scholar 

  • Bankaitis, V. A., Johnson, L. M., and Emr, S. D., 1986, Isolation of yeast mutants defective in protein targeting to the vacuole, Proc. Natl. Acad. Sci. U.S.A. 83:9075–9079.

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis, V. A., Malehorn, D. E., Emr, S. D., and Greene, R., 1989, The Saccharomyces cere-visiae Secl4 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex, J. Cell Biol. 108:1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis, V. A., Aitken, J. R., Cleves, A. E., and Dowhan, W., 1990, An essential role for a phospholipid transfer protein in yeast Golgi function, Nature 347:561–562.

    Article  PubMed  CAS  Google Scholar 

  • Beadle, G. W., 1944, An inositolless mutant strain of Neurospora and its use in bioassays, J. Biol. Chem. 156:683–689.

    CAS  Google Scholar 

  • Beadle, G. W., and Tatum, E. L., 1945, Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements, Am. J. Bot. 32:678–686.

    Article  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P., and Hanley, M. R., 1989, Neural and developmental actions of lithium: A unifying hypothesis, Cell 59:411–419.

    Article  PubMed  CAS  Google Scholar 

  • Bianchetti, R., and Sartirana, M. L., 1967, The mechanism of repression by inorganic phosphate of phytase synthesis in the germinating wheat embryo, Biochim. Biophys. Acta 145:485–490.

    PubMed  CAS  Google Scholar 

  • Biswas, B. B., Biswas, S., Chakrabarti, S., and De, B. P., 1978, A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds, in Cyclitols and Phospho-inositides (W. W. Wells and F. Eisenberg, Jr., eds.), pp. 57–68, Academic Press, New York.

    Google Scholar 

  • Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G., and Pak, W. L., 1988, Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction, Cell 54:723–733.

    Article  PubMed  CAS  Google Scholar 

  • Bollmann, O., Strother, S., and Hoffman-Ostenhoff, O., 1980, The enzymes involved in the synthesis of phytic acid in Lemna gibba, Mol. Cell. Biol. 30:171–175.

    CAS  Google Scholar 

  • Caldwell, K. K., Lips, D. L., Bansal, V. S., and Majerus, P. W., 1991, Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate, J. Biol. Chem. 266:18378–18386.

    PubMed  CAS  Google Scholar 

  • Camilli, A., Goldfine, H., and Portnoy, D. A., 1991, Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent, J. Exp. Med. 173:751–754.

    Article  PubMed  CAS  Google Scholar 

  • Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S., 1991, Oncogenes and signal transduction, Cell 64:281–302.

    Article  PubMed  CAS  Google Scholar 

  • Carman, G. M., and Henry, S. A., 1989, Phospholipid biosynthesis in yeast, Annu. Rev. Biochem. 58:635–669.

    Article  PubMed  CAS  Google Scholar 

  • Chattaway, J. A., Drøbak, B. K., Watkins, P.A.C., Dawson, A. P., Letcher, A. J., Stephens, L. R., and Irvine, R. F., 1992, An inositol 1,4,5-trisphosphate-6-kinase activity in pea roots, Planta 187:542–545.

    Article  CAS  Google Scholar 

  • Choi, K. Y., Kim, H. K., Lee, S. Y., Moon, K. H., Sim, S. S., Kim, J. W., Chung, H. K., and Rhee, S. G., 1990, Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase, Science 248:64–66.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. D., Lin, L-L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, L. Y., Milona, N., and Knopf, J. L., 1991, A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP, Cell 65:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D. J., 1980, Inositol Phosphates: Their Chemistry, Biochemistry and Physiology, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Culbertson, M. R., and Henry, S.A., 1975, Inositol-requiring mutants of Saccharomyces cerevisiae, Genetics 80:23–40.

    PubMed  CAS  Google Scholar 

  • Dawson, R.M.C., and Clarke, N., 1972, D-myo-Inositol l:2-cyclic phosphate 2-phosphohydrolase, Biochem. J. 127:113–118.

    PubMed  CAS  Google Scholar 

  • Dawson, R.M.C., and Clarke, N. G., 1973, A comparison of D-inositol 1:2-cyclic phosphate 2-phosphohydrolase with other phosphodiesterases of kidney, Biochem. J. 134:59–67.

    PubMed  CAS  Google Scholar 

  • Dawson, R.M.C., Freinkel, N., Jungalwala, F. B., and Clarke, N., 1971, The enzymatic formation of myo-inositol 1:2-cyclic phosphate from phosphatidylinositol, Biochem. J. 122:605–607.

    PubMed  CAS  Google Scholar 

  • Dean Johnson, M., 1994, The Arabidopsis thaliana myo-inositol 1-phosphate synthase (EC 5.5.1.4), Plant Physiol. 105:1023–1024.

    Article  Google Scholar 

  • Dean-Johnson, M., and Henry, S.A., 1989, Biosynthesis of inositol in yeast, Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus, J. Biol. Chem. 264:1274–1283.

    PubMed  CAS  Google Scholar 

  • Dean Johnson, M., and Sussex, I. M., 1995, lL-myo-inositol 1-phosphate synthase from Arabidopsis thaliana, Plant Physiol. 107:613–619.

    Google Scholar 

  • Dickeson, S. K., Lim, C. N., Schuyler, G. T., Dalton, T. P., Helmkamp, G. M., Jr., Yarbrough, L. R., 1989, Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein, J. Biol. Chem. 264:16557–16564.

    PubMed  CAS  Google Scholar 

  • Dickeson, S. K., Helmkamp, G. M., Jr., and Yarbrough, L. R., 1994, Sequence of a human cDNA encoding phosphatidylinositol transfer protein and occurrence of a related sequence in widely divergent eukaryotes, Gene 142:301–305.

    Article  PubMed  CAS  Google Scholar 

  • Diehl, R. E., Whiting, P., Potter, J., Gee, N., Ragan, C. I., Linemeyer, D., Schoepfer, R., Bennet, C., and Dixon, R.A.F. 1990, Cloning and expression of bovine brain inositol monophos-phatase, J. Biol. Chem. 265:5946–5949.

    PubMed  CAS  Google Scholar 

  • Dietz, M., and Albersheim, P., 1965, The enzymatic phosphorylation of myo-inositol, Biochem. Biophys. Res. Commun. 19:598–603.

    Article  PubMed  CAS  Google Scholar 

  • Divecha, N., Banfić, H., and Irvine, R. F., 1993, Inositides and the nucleus and inositides in the nucleus, Cell 74:405–407.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, J. F., and Hokin, F. E., 1987, Inositol 1,2-cyclic 4,5-trisphosphate concentration relative to inositol 1,4,5-trisphosphate in pancreatic minilobules on stimulation with carbamylcholine in the absence of lithium: Possible role as a second messenger in long-but not short-term responses, J. Biol. Chem. 262:13892–13895.

    PubMed  CAS  Google Scholar 

  • Dmitrieva, M. I., and Sobolev, A.M., 1984, Mobilization of phytin in castor bean during germination, Soviet Plant Physiol. 31:1028–1035.

    CAS  Google Scholar 

  • Donahue, T. F., and Henry, S. A., 1981a, Inositol mutants of Saccharomyces cerevisiae: Mapping the inol locus and characterizing alleles of the inol, ino2, and ino4 loci, Genetics 98:491–503.

    PubMed  CAS  Google Scholar 

  • Donahue, T. F., and Henry, S. A., 1981b, myo-Inositol-1-phosphate synthase, Characteristics of the enzyme and identification of its structural gene in yeast, J. Biol. Chem. 256:7077–7085.

    PubMed  CAS  Google Scholar 

  • Downes, C. P., and Carter, A. N., 1991, Phosphoinositide 3-kinase: A new effector in signal transduction?, Cellular Signalling 3:501–513.

    Article  PubMed  CAS  Google Scholar 

  • Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:697–712.

    PubMed  Google Scholar 

  • Ehrlich, K. C., Montalbano, B. G., Mullaney, E. J., Dischinger, H. C., Jr., and Ullah, A.H.J., 1993, Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum), Biochem. Biophys. Res. Commun. 195:53–57.

    Article  PubMed  CAS  Google Scholar 

  • English, P. D., Dietz, M., and Albersheim, P., 1966, Myoinositol kinase: Partial purification and identification of product, Science 151:198–199.

    Article  PubMed  CAS  Google Scholar 

  • Erdman, J. W., 1981, Bioavailability of trace minerals from cereals and legumes, Cereal Chem. 58:21–26.

    CAS  Google Scholar 

  • Escobedo, J. A., Navankasattusas, S., Kavanaugh, W. M., Milfay, D., Fried, V. A., and Williams, L. T., 1991, cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor, Cell 65:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Estevez, F., Pulford, D., Stark, M.J.R., Crater, A. N., and Downes, C. P., 1994, Inositol trisphosp-hate metabolism in Saccharomyces cerevisiae: Identification, purification and properties of inositol 1,4,5-trisphosphate 6-kinase, Biochem. J. 302:709–716.

    PubMed  CAS  Google Scholar 

  • Fitzgibbon, J., Pilz, A., Gayther, S., Appukuttan, B., Dulai, K. S., Dalhanty, J. D. A., Helmkamp, G. M., Jr., Yarbrough, L. R., and Hunt, D. M., 1994, Localization of the gene encoding human phosphatidylinositol transfer protein (PITPN) to 17p 13.3: A gene showing homology to the Drosophila retinal degeneration B gene (rdgB), Cytogenet. Cell. Genet. 67:205–207.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, C. A., Schnieders, E. A., Emerick, A. W., Kunisawa, R., Admon, A., and Thorner, J., 1993, Phosphatidylinositol 4-kinase: Gene structure and requirement for yeast cell viability, Science 262:1444–1448.

    Article  PubMed  CAS  Google Scholar 

  • Foster, P. S., Gesini, E., Claudianos, C., Hopkinson, K. C., and Denborough, M. A., 1989, Inositol 1,4,5-trisphosphate phosphatase deficiency and malignant hyperpyrexia in swine, Lancet 8655:124–127.

    Article  Google Scholar 

  • Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature 342:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Gee, N. S., Ragan, C. I., Watling, K. J., Aspley, S., Jackson, R. G., Reid, G. G., Gani, D., and Shute, J. K., 1988, The purification and properties of myo-inositol monophosphatase from bovine brain, Biochem. J. 249:883–889.

    PubMed  CAS  Google Scholar 

  • Gibson, D. M., and Ullah, A.B.J., 1990, Phytases and their action on phytic acid, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 77–92, Wiley-Liss, New York.

    Google Scholar 

  • Glomset, J. A., Gelb, M. H., and Farnsworth, C.S., 1990, Prenyl proteins in eukaryotic cells: A new type of membrane anchor, Trends Biochem. Sci. 15:139–142.

    Article  PubMed  CAS  Google Scholar 

  • Graf, E., and Eaton, J. W., 1993, Suppression of colonic cancer by dietary phytic acid. Nutr. Cancer 19:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.

    PubMed  CAS  Google Scholar 

  • Harlan, J. E., Hajduk, P. J., Yoon, H. S., and Fesik, S. W., 1994, Peckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate, Nature 371:168–170.

    Article  PubMed  CAS  Google Scholar 

  • Harris, W. A., and Stark, W. S., 1977, Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process, J. Gen. Physiol. 69:261–291.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P. T., Poyner, D. R., Jackson, T. R., Letcher, A. J., Lander, D. A., and Irvine, R. F., 1993, Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hecakisphosphate, Biochem. J. 294:929–934.

    PubMed  CAS  Google Scholar 

  • Hay, J. C., and Martin, T.F.J., 1993, Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion, Nature 366:572–575.

    Article  PubMed  CAS  Google Scholar 

  • Herman, P. K., and Emr, S. D., 1990, Characterization for VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae, Mol. Cell. Biol. 10:6742–6754.

    PubMed  CAS  Google Scholar 

  • Herman, P. K., Stack, J. H., and Emr, S. D., 1991, A genetic and structural analysis of the yeast Vps15 protein kinase: Evidence for a direct role of Vps15p in vacuolar protein delivery, EMBO J. 10:4049–4060.

    PubMed  CAS  Google Scholar 

  • Heslop, J. P., Irvine, R. F., Tashjian, A. H., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119:395–401.

    PubMed  CAS  Google Scholar 

  • Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., and Waterfield, M. D., 1992, Phosphatidylinositol 3-kinase: Structure and expression of the 110 kd catalytic subunit, Cell 70:419–429.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, J. P., and Henry, S. A., 1986, Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis, Mol. Cell. Biol. 6:3320–3328.

    PubMed  CAS  Google Scholar 

  • Hosaka, K., Nikawa, J., Kodaki, T., and Yamashita, S., 1992, A dominant mutation that alters the regulation of INO1 Expression in Saccharomyces cerevisiae, J. Biochem. 111:352–358.

    PubMed  CAS  Google Scholar 

  • Hoshizaki, D. K., Hill, J. E., and Henry, S. A., 1990, The S. cerevisiae Ino4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes, J. Biol. Chem. 265:4736–4745.

    PubMed  CAS  Google Scholar 

  • Hotta, Y., and Benzer, S., 1970, Genetic dissection of the Drosophila nervous system by means of mosaics, Proc. Natl. Acad. Sci. U.S.A. 67:1156–1163.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. F., 1992, Inositol phosphates and Ca2+ entry: Toward a proliferation or a simplification? FASEB J. 6:3085–3091.

    PubMed  CAS  Google Scholar 

  • Isaaks, R. E., and Harkness, D. R., 1980, Erythrocyte organic phosphates and hemoglobin function in birds, reptiles, and fishes, Amer. Zool. 20:115–129.

    Google Scholar 

  • Jänne, P. A., Dutra, A. S., Dracopoli, N. C., Chamas, L. R., Puck, J. M., and Nussbaum, R. L., 1994, Localization of the 75-kDa inositol polyphosphate-5-phosphatase (INPP5B) to human chromosome band lp34, Cytogenet. Cell Genet. 66:164–166.

    Article  PubMed  Google Scholar 

  • Kao, F.-T., and Puck, T. T., 1968, Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells, Proc. Natl. Acad. Sci. U.S.A. 60:1275–1281.

    Article  PubMed  CAS  Google Scholar 

  • Klig, L. S., and Henry, S. A., 1984, Isolation of the yeast INO1 gene: Located on an autonomously replicating plasmid, the gene is fully regulated, Proc. Natl. Acad. Sci. U.S.A. 81:3816–3820.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, J., Henriquez, R., Schneider, U., Deuter-Reinhard, M., Movva, N. R., and Hall, M. N., 1993, Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression, Cell 73:585–596.

    Article  PubMed  CAS  Google Scholar 

  • Laxminarayan, K. M., Chan, B. K., Tetaz, T., Bird, P. I., and Mitchell, C. A., 1994, Characterization of a cDNA encoding the 43-kDa membrane-associated inositol-polyphosphate 5-phospha-tase, J. Biol. Chem. 269:17305–17310.

    PubMed  CAS  Google Scholar 

  • Leonis, M. A., and Silbert, D. F., 1993, Characterization of a second hamster lung fibroblast mutant with defects in phosphatidylinositol-specific phospholipase C., J. Biol. Chem. 268:9416–9424.

    PubMed  CAS  Google Scholar 

  • Lips, D. L., Majerus, P. W., Gorga, F. R., Young, A. T., and Benjamin, T. L., 1989, Phosphatidylinositol 3-phosphate is present in normal and transformed fibroblasts and is resistant to hydrolysis by bovine brain phospholipase C II, J. Biol. Chem. 264:8759–8763.

    PubMed  CAS  Google Scholar 

  • Loewus, F. A., 1990, Inositol biosynthesis, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 13–19, Wiley-Liss, New York.

    Google Scholar 

  • Loewus, F. A., Everard, J. D., and Young, K. A., 1990, Inositol metabolism: Precursor role and breakdown, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 21–45, Wiley-Liss, New York.

    Google Scholar 

  • Lopes, J. M., Hirsch, J. P., Chorgo, P. A., Schulze, K. L., and Henry, S. A., 1991, Analysis of sequences involved in the Ino1 promoter that are involved in its regulation by phospholipid precursors, Nucleic Acids Res. 19:1687–1693.

    Article  PubMed  CAS  Google Scholar 

  • Lopes, J. M., Schulze, K. L., Yates, J. W., Hirsch, J. P., and Henry, S. A., 1993, The Inol promoter of Saccharomyces cerevisiae includes an upstream repressor sequence (URS1) common to a diverse set of yeast genes, J. Bacteriol. 175:4235–4238.

    PubMed  CAS  Google Scholar 

  • Lott, J.N.A., 1984, Accumulation of seed reserves of phosphorus and other minerals, in Seed Physiology, (D. R. Murray, ed.), pp. 139–166, Academic Press, New York.

    Google Scholar 

  • Majerus, P. W., 1992, Inositol phosphate biochemistry, Annu. Rev. Biochem. 61:225–250.

    Article  PubMed  CAS  Google Scholar 

  • Majerus, P. W., Ross, T. S., Cunningham, T. W., Caldwell, K. K., Jefferson, A. B., and Bansal, V. S., 1990, Recent insights in phosphatidylinositol signaling, Cell 63:459–465.

    Article  PubMed  CAS  Google Scholar 

  • Matzaris, M., Jackson, S. P., Laxminarayan, K. M., Speed, C. J., and Mitchell, C. A., 1994, Identification and characterization of the phosphatidylinositol-(4,5)-bisphosphate 5-phosphatase in human platelets, J. Biol. Chem. 269:3397–3402.

    PubMed  CAS  Google Scholar 

  • Mayer, B. J., Ren, R., Clark, K. L., and Baltimore, D., 1993, A putative modular domain present in diverse signaling proteins, Cell 73:629–630.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, G. W., Radenberg, T., Thiel, U., Vogel, G., and Stephens, L. R., 1992, Phosphoinositol diphosphates: Non-enzymic formation in vitro and occurrence in vivo in the cellular slime mold Dictyostelium, Carbohydrate Res. 234:247–262.

    Article  CAS  Google Scholar 

  • McAllister, G., Whiting, P., Hammond, E. A., Knowles, M. R., Atack, J. R., Bailey, F. J., Maigetter, R., and Ragan, C. I., 1992, cDNA cloning of human and rat brain myo-inositol monophosphatase, Biochem. J. 284:749–754.

    PubMed  CAS  Google Scholar 

  • McCance, R. A., and Widdowson, E. M., 1935, Phytic acid in human nutrition, Biochem. J. 29:42694–42699.

    Google Scholar 

  • Menniti, F. S., Miller, R. N., Putney, J. W. Jr., and Shears, S. B., 1993, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells, J. Biol. Chem. 268:3850–3856.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., Südhof, T. C., Takei, K., and Camilli, P. D., 1989, Putative receptor of inositol 1,4,5-trisphosphate similar to ryanodine receptor, Nature 342:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Mignery, G. A., Newton, C. L., Archer, B. T. III, and Südhof, T. C., 1990, Structure and expression of the rat inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 265:12679–12685.

    PubMed  CAS  Google Scholar 

  • Mullaney, E. J., Gibson, D. M., and Ullah, A.H.J., 1991, Positive identification of a lambda gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification, Appl. Microbiol. Biotechnol. 35:611–614.

    Article  PubMed  CAS  Google Scholar 

  • Musacchio, A., Gibson, T., Rice, P., Thompson, J., and Saraste, M., 1993, The PH domain: A common piece in the structural patchwork of signalling proteins, Trends Biochem. Sci. 18:343–348.

    Article  PubMed  CAS  Google Scholar 

  • Nikawa, J., and Yamashita, S., 1982, Yeast mutant defective in synthesis of phosphatidylinositol, Eur. J. Biochem. 125:445–451.

    Article  PubMed  CAS  Google Scholar 

  • Nikawa, J., and Yamashita, S., 1984, Molecular cloning of the gene encoding CDPdiacylglycerol-inositol 3-phosphatidyl transferase in Saccharomyces cerevisiae, Eur. J. Biochem. 143:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Nikoloff, D. M., McGraw, P., and Henry, S. A., 1992, The Ino1 gene of Saccharomyces cerevisiae encodes a helilx-loop-helix protein that is required for activation of phospholipid biosynthesis, Nucleic Acids Res. 20:3253.

    Article  PubMed  CAS  Google Scholar 

  • Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, M., Tanaka, K., and Kasai, Z., 1979, Accumulation of phosphorus, magnesium and potassium in developing rice grains followed by electron microprobe X-ray analysis focusing on the aleurone layer, Plant Cell Physiol. 20:19–27.

    CAS  Google Scholar 

  • Otsu, M., Hiles, I., Gout, I., Fry, M. J., Ruiz-Larrea, F., Panayotou, G., Thompson, A., Dhand, R., Hsuan, J., Totty, N., Smith, A. D., Morgan, S. J., Courtneidge, S. A., Parker, P. J., and Waterfield, M. D., 1991, Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase, Cell 65:91–104.

    Article  PubMed  CAS  Google Scholar 

  • Pak, W. L., Grossfield, J., and Arnold, K., 1970, Mutants of the visual pathway of Drosophila melanogastor, Nature 227:518–520.

    Article  PubMed  CAS  Google Scholar 

  • Paris, S., Chambard, J.-C., and Pouysségur, J., 1987, Coupling between phosphoinositide breakdown and early mitogenic events in fibroblasts, J. Biol. Chem. 262:1977–1983.

    PubMed  CAS  Google Scholar 

  • Pen, J., Verwoerd, T. C., van Paridon, P. A., Beudeker, R. F., van den Elzen, P.J.M., Geerse, K., van der Klis, J. D., Versteegh, H.A.J., van Ooyen, A.J.J., and Hoekema, A., 1993, Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization, Bioltechnology 11:811–814.

    Article  CAS  Google Scholar 

  • Pernollet, J.-C., 1978, Protein bodies of seeds: Ultrastructure, biochemistry, biosynthesis and degradation, Phytochemistry 17:1473–1480.

    Article  CAS  Google Scholar 

  • Phillippy, B. Q., Ullah, A.H.J., and Ehrlich, K. C., 1994, Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds, J. Biol. Chem. 269:28393–28399.

    PubMed  CAS  Google Scholar 

  • Piddington, C. S., Houston, C. S., Paloheimo, M., Cantrell, M., Miettinen-Oinonen, A., Nevalainen, H., and Rambosek, J., 1993, The cloning and sequencing of the genes encoding phytase (phy) and pH 25-optimum acid phosphatase (aph) from Aspergillus niger var. awamori, Gene 133:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Pouysségur, J., Sardet, C., Franchi, A., L’Allemain, G., and Paris, S., 1984, A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH, Proc. Natl. Acad. Sci. USA 81:4833–4837.

    Article  PubMed  Google Scholar 

  • Raboy, V., 1990, The biochemistry and genetics of phytic acid synthesis, in Inositol Metabolism in Plants (D. J. Moore, W. Boss, and F. A. Loewus, eds.), pp. 52–73, Alan R. Liss, New York.

    Google Scholar 

  • Raboy, V., and Dickinson, D. B., 1984, Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc, Plant Physiol. 75:1094–1098.

    Article  PubMed  CAS  Google Scholar 

  • Raboy, V., Dickinson, D. B., and Neuffer, M. G., 1990, A survey of maize mutants for variation in phytic acid, Maydica 35:383–390.

    Google Scholar 

  • Raboy, V., Young, K., and Gerbasi, P., 1994, Maize low phytic acid (Lpa) mutants, Abstracts: 4th International Congress of Plant Molecular Biology: Abs. No. 1827.

    Google Scholar 

  • Rath, H. M., Doyle, G. A. R., and Silbert, D. F., 1989, Hamster fibroblasts defective in thrombin-induced mitogenesis, J. Biol. Chem. 264:13387–13390.

    PubMed  CAS  Google Scholar 

  • Rath, H. M., Fee, J. A., Rhee, S. G., and Silbert, D. F., 1990, Characterization of phosphatidylinositol-specific phospholipase C defects associated with thrombin-induced mitogenesis, J. Biol. Chem. 265:3080–3087.

    PubMed  CAS  Google Scholar 

  • Rhee, S. G., Suh, P.G., Ryu, S.-H., and Lee, S. Y., 1989, Studies of inositol phospholipid-specific phospholipase C., Science 244:546–550.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. S., Klionsky, D. J., Banta, L. M., and Emr, S. D., 1988, Protein sorting in Sac-charomyces cerevisiae: Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases, Mol. Cell. Biol. 8:4936–4948.

    PubMed  CAS  Google Scholar 

  • Ross, T. S., Tait, J. F., and Majerus, P. W., 1990, Identity of inositol 1,2-cyclic phosphate 2-phos-phoydrolase with lipocortin III, Science 248:605–607.

    Article  PubMed  CAS  Google Scholar 

  • Ross, T. S., Jefferson, A. B., Mitchell, C. A., and Majerus, P. W., 1991a, Cloning and expression of human 75-kDa inositol polyphosphate-5-phosphatase, J. Biol. Chem. 266:20283–20289.

    PubMed  CAS  Google Scholar 

  • Ross, T. S., Whiteley, B., Graham, R. A., and Majerus, P. W., 1991b, Cyclic hydrolase-transfected 3T3 cells have low levels of inositol 1,2-cyclic phosphate and reach confluence at low density, J. Biol. Chem. 266:9086–9092.

    PubMed  CAS  Google Scholar 

  • Sartirana, M. A., and Bianchetti, R., 1967, The effects of phosphate on the development of phytase in the wheat embryo, Physiol. Plant. 20:1066–1075.

    Article  CAS  Google Scholar 

  • Schu, P. V., Takegawa, K., Fry, M. J., Stack, J. H., Waterfield, M. D., and Emr, S. D., 1993, Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting, Science 260:88–91.

    Article  PubMed  CAS  Google Scholar 

  • Serunian, L. A., Haber, M. T., Fukui, T., Kim, J. W., Rhee, S. G., Lowenstein, J. M., and Cantley, L. C., 1989, Polyphosphoinositides produced by the phosphatidylinositol 3-kinase are poor substrates for phospholipase C from rat liver and bovine brain, J. Biol. Chem. 264:17809–17815.

    PubMed  CAS  Google Scholar 

  • Skinner, H. B., Alb, J. G., Jr., Whitters, E. A., Helmkamp, G. M., Jr., and Bankaitis, V. A., 1993, Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast Sec14 gene product, EMBO J. 12:4775–4784.

    PubMed  CAS  Google Scholar 

  • Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J., 1991, Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell 65:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Smart, C. C., and Fleming, A. J., 1993, A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic acid induced morphogenic response in Spirodela polyrrhiza, Plant J. 4:279–293.

    Article  PubMed  CAS  Google Scholar 

  • Stack, J. H., Herman, P. K., Schu, P. V., and Emr, S. D., 1993, A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole, EMBO J. 12:2195–2204.

    PubMed  CAS  Google Scholar 

  • Stark, W. S., Chen, D.-M., Johnson, M. A., and Frayer, K. L., 1983, The rdgB gene of Drosophila: Retinal degeneration in different alleles and inhibition by norpA, J. Insect Physiol. 29:123–131.

    Article  Google Scholar 

  • Stephens, L. R., and Irvine, R. F., 1990, Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostellium, Nature 346:580–583.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, L. R., Kay, R. R., and Irvine, R. F., 1990, A myo-inositol D-3 hydroxykinase activity in Dictyostelium, Biochem. J. 272:201–210.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., Hawkins, P. T., Stanley, A. F., Moore, T., Poyner, D. R., Morris, P. J., Hanley, M. R., Kay, R. R., and Irvine, R. F., 1991, myo-Inositol pentakisphosphates: Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate, Biochem. J. 275:485–499.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., Jackson, T. R., and Hawkins, P. T., 1993a, Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system?, Biochim. Bio-phys. Acta 1179:27–75.

    CAS  Google Scholar 

  • Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T. R., Hawkins, P. T., and Mayr, G. W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphos-phate(s), J. Biol. Chem. 268:4009–4015.

    PubMed  CAS  Google Scholar 

  • Südhof, T. C., Newton, C. L., Archer, B. T., III, Ushkaryov, Y. A., and Mignery, G. A., 1991, Structure of a novel InsP3 receptor, EMBO J. 10:3199–3206.

    PubMed  Google Scholar 

  • Sylvia, V., Curtin, G., Norman, J., Stec, J., and Busbee, D., 1988, Activation of a low specific activity form of DNA polymerase α by inositol-1,4-bisphosphate, Cell 54:651–658.

    Article  PubMed  CAS  Google Scholar 

  • Talmage, D. A., Freund, R., Young, A. T., Dahl, J., Dawe, C. J., and Benjamin, T. L., 1989, Phosphorylation of middle T by pp60c-src: A switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis, Cell 59:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Theibert, A. B., Estevez, V. A., Ferris, C. D., Danoff, S. K., Barrow, R. K., Prestwich, G. D., and Snyder, S. H., 1991, Inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate receptor proteins: Isolation and characterization from rat brain, Proc. Natl. Acad. Sci. U.S.A. 88:3165–3169.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, S., Matsumoto, N., Wang, P., Inoue, H., Yoshioka, T., Hotta, Y., and Osawa, T., 1990, Purification and partial amino acid sequences of phosphoinositide-specific phospholipase C of Drosophila eye, J. Biol. Chem. 265:14842–14848.

    PubMed  CAS  Google Scholar 

  • Trewavas, A., and Gilroy, S., 1991, Signal transduction in plant cells, Trends Genet. 7:356–361.

    PubMed  CAS  Google Scholar 

  • Tyers, M., Rachubinski, R. A., Stewart, M. I., Varrichio, A. M., Shorr, R.G.L., Haslam, R. J., and Harley, C. B., 1988, Molecular cloning and expression of the major protein kinase C substrate of platelets, Nature 333:470–473.

    Article  PubMed  CAS  Google Scholar 

  • van Hartingsveldt, W., van Zeijl, C.M.J., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M.E.G., Luiten, R.G.M., van Paridon, P. A., Selten, G.C.M., Veenstra, A. E., van Gorcom, R.F.M., and van den Hondel, C.A.M.J.J., 1993, Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger, Gene 127:87–94.

    Article  PubMed  Google Scholar 

  • Vihtelic, T. S., Goebl, M., Milligan, S., O’Tousa, J. E., and Hyde, D. R., 1993, Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein, J. Cell Biol. 122:1013–1022.

    Article  PubMed  CAS  Google Scholar 

  • Voglmaier, S. M., Keen, J. H., Murphy, J., Ferris, C. D., Prestwich, G. D., Snyder, S. H., and Theibert, A. B., 1992, Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2, Biochem. Biophys. Res. Commun. 187:158–163.

    Article  PubMed  CAS  Google Scholar 

  • Welters, P., Takegawa, K., Emr, S. D., and Chrispeels, M. J., 1994, ATVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain, Proc. Natl. Acad. Sci. U.S.A. 91:11398–11402.

    Article  PubMed  CAS  Google Scholar 

  • White, M. J., Hirsch, J. P., and Henry, S. A., 1991, The Opil gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper, J. Biol. Chem. 266:863–872.

    PubMed  CAS  Google Scholar 

  • Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L., 1988, Type I phospha-tidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature 332:644–646.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. G., 1971, Biosynthesis of inositol by inositol-less mutants of Neurospora crassa, Aust. J. Biol. Sci. 24:1181–1188.

    CAS  Google Scholar 

  • Woodward, C., Alcorta, E., and Carlson, J., 1992, The rdgB gene of Drosophila: A link between vision and olfaction, J. Neurogenetics 8:17–31.

    Article  Google Scholar 

  • Wreggett, K. A., 1992, Inositol monophosphatase is a highly conserved enzyme having localized structural similarity to both glycerol 3-phosphate dehydrogenase and haemoglobin, Biochem. J. 286:147–152.

    PubMed  CAS  Google Scholar 

  • Yagisawa, H., Hirata, M., Kanematsu, T., Watanabe, Y., Ozaki, S., Sakuma, K., Tanaka, H., Yabuta, N., Kamata, H., Hirata, H., and Nojima, H., 1994, Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1, J. Biol. Chem. 269:20179–20188.

    PubMed  CAS  Google Scholar 

  • Yoakim, M. W., Hou, W., Liu, Y., Carpenter, C. L., Kapeller, R., and Schaffhausen, B. S., 1992, Interactions of Polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol 3-kinase, J. Virol. 66:5485–5491.

    PubMed  CAS  Google Scholar 

  • Yoakim, M., Hou, W., Songyang, Z., Liu, Y., Cantley, L., and Schaffhausen, B., 1994, Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity, Mol. Cell. Biol. 14:5929–5938.

    PubMed  CAS  Google Scholar 

  • Yokoo, T., Matsui, Y., Yagisawa, H., Nojima, H., Uno, I., and Tohe, A., 1993, The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae, is important for cell growth, Proc. Natl. Acad. Sci. U.S.A. 90:1804–1808.

    Article  CAS  Google Scholar 

  • York, J. D., and Majerus, P. W., 1990, Isolation and heterologous expression of a cDNA encoding bovine inositol polyphosphate 1-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 87:9548–9552.

    Article  PubMed  CAS  Google Scholar 

  • York, J. D., and Majerus, P. W., 1994, Nuclear phosphatidylinositols decrease during S-phase of the cell cycle of HeLa cells, J. Biol. Chem. 269:7847–7850.

    PubMed  CAS  Google Scholar 

  • York, J. D., Veile, R. A., Donis-Keller, H., and Majerus, P. W., 1993, Cloning, heterologous expression, and chromosomal localization of human inositol polyphosphate 1-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 90:5833–5837.

    Article  PubMed  CAS  Google Scholar 

  • York, J. D., Saffitz, J. E., and Majerus, P. W., 1994, Inositol polyphosphate 1-phosphatase is present in the nucleus and inhibits DNA synthesis, J. Biol. Chem. 269:19992–19999.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, S., Tanimura, T., Miyawaki, A., Nakamura, M., Yuzaki, M., Furuichi, T., and Miko-shiba, K., 1992, Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster, J. Biol. Chem. 267:16613–16619.

    PubMed  CAS  Google Scholar 

  • Yoshioka, T., Inoue, H., and Hotta, Y., 1985, Absence of phosphatidylinositol phosphodiesterase in the head of a Drosophila visual mutant, norpA (no receptor potential A), J. Biochem. 97:1251–1254.

    CAS  Google Scholar 

  • Zhang, X., Jefferson, A. B., Auethavekiat, V., and Majerus, P. W., 1995, The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 92:4853–4856.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Raboy, V., Gerbasi, P. (1996). Genetics of myo-Inositol Phosphate Synthesis and Accumulation. In: Biswas, B.B., Biswas, S. (eds) myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Subcellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0343-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0343-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8007-8

  • Online ISBN: 978-1-4613-0343-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics