Advertisement

Inositol Phosphates and Their Metabolism in Plants

  • Pushpalatha P. N. Murthy
Part of the Subcellular Biochemistry book series (SCBI, volume 26)

Abstract

The discovery that plasma membrane phosphoinositides mediate cellular responses to external signals has led to tremendous interest in the structure and metabolism of phosphoinositides and inositol phosphates. The role of inositol1,4,5-trisphosphate [Ins(1,4,5)P3] as a mediator of receptor-initiated changes in intracellular calcium is well characterized (Berridge, 1993; Berridge and Irvine, 1989). The role of Ins(1,3,4,5)P4 (the abbreviations used are defined in Section 2) in regulating cellular calcium entry at the plasma membrane (Berridge, 1993; Berridge and Irvine, 1989) is evolving rapidly. Neurotransmitter functions for Ins(1,3,4,5,6)P5 and InsP6 (Vallejo et al., 1988) have been proposed. The ability of Ins(1,3,4,5,6,)P5 to modulate the affinity of hemoglobin for oxygen is widely accepted (Isaacks and Harkness, 1980). The possibility that other inositol phosphates found in cells may perform cellular functions has heightened interest in the structure and metabolism of inositol phosphates (Menniti et al., 1993b). In vivo, inositol phosphates are interrelated by a complex web of reactions (Majerus et al., 1988), and a rapid dynamic equilibrium exists among the different inositol phosphates. A number of recent reviews (Drøbak, 1992, 1993; Coté and Crain, 1993; Hetherington and Drøbak, 1992; Rincon and Boss, 1990) and other chapters in this book contain information on the structure and metabolism of phosphoinositides in plant cells. This review describes the pathways and enzymes involved in the metabolism of inositol phosphates in plant cells.

Keywords

Phytic Acid Methyl Ether Mung Bean Inositol Phosphate Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, K. E., Gish, M. P., Honchar, M. P., and Sherman, W. R., 1987, Evidence that inositol-1-phosphate in brain of lithium-treated rats results mainly from phosphatidylinositol metabolism, Biochem. J. 242:517–524.PubMedGoogle Scholar
  2. Adams, S. R., Kao, J.P.Y., Grynkiewicz, G., Minta, A., and Tsien, R. Y., 1988, Biologically useful chelators that release Ca+2 upon illumination, J. Am. Chem. Soc. 110:3212–3220.CrossRefGoogle Scholar
  3. Agranoff, B. W., 1978, Cyclitol confusion, Trends Biochem. Sci. 3:N283–N285.CrossRefGoogle Scholar
  4. Asada, K., Tanaka, K., and Kasai, Z., 1969, Formation of phytic acid in cereal grains, Ann. N.Y. Acad. Sci. 165:801–814.PubMedGoogle Scholar
  5. Baldi, B. G., Scott, J. J., Everard, J. D., and Loewus, F. A., 1988, Localization of constitutive phytases in lily pollen and properties of the pH 8 form, Plant Sci. 56:137–147.CrossRefGoogle Scholar
  6. Barrientes, L., Scott, J. J., and Murthy, P.P.N., 1994, Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen, Plant Physiol. 106:1489–1495.CrossRefGoogle Scholar
  7. Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.PubMedCrossRefGoogle Scholar
  8. Berridge, M. J., and Irvine, R. F., 1989, Inositol trisphosphate and diaclyglycerol: Two interactive second messengers, Nature 341:197–205.PubMedCrossRefGoogle Scholar
  9. Billington, D. C., 1993, The Inositol Phosphates, Chemical Synthesis and Biological Significance, VCH Publishers, New York, pp. 87–138.Google Scholar
  10. Biswas, S., Maity, I. B., Chakrabarti, S., and Biswas, B. B., Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaeolus aureus, Arch. Biochem. Biophys. 185:557–566.Google Scholar
  11. Bollman, O., Strother, S., and Hoffman-Ostenhof, O., 1980, The enzymes involved in the synthesis of phytic acid in Lemna gibba (studies on the biosynthesis of cyclitols, XL), Mol. Cell. Biochem. 30:171–175.CrossRefGoogle Scholar
  12. Chakrabarti, S., and Biswas, B. B., 1981, Two forms of phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 20:1815–1817.CrossRefGoogle Scholar
  13. Cooke, A. M., Nahorski, S. R., and Potter, B.V.L., 1989a, Myo-inositol 1,4,5-trisphosphorothioate is a potent competitive inhibitor of human erythrocyte 5-phosphatase, FEBS Lett. 242:373–377.PubMedCrossRefGoogle Scholar
  14. Cooke, A. M., Noble, N. J., Gigg, R., Willcoks, A. L., Strupish, J., Nahorski, S. R., and Potter, B.V.L., 1989b, Synthesis of myo-inositol 1,4-bisphosphate-5-phosphorothioate, Biochem. Soc. Trans. 16:992.Google Scholar
  15. Cosgrove, D. J., 1980a, Inositol Phosphates, Their Chemistry, Biochemistry and Physiology, Elsevier, Amsterdam.Google Scholar
  16. Cosgrove, D. J., 1980b, Phytase, in Inositol Phosphates, Their Chemistry, Biochemistry, and Physiology, pp. 85–98, Elsevier, Amsterdam.Google Scholar
  17. Cosgrove, D. J., 1980c, Intermediates in the dephosphorylation of P6-inositols by phytase enzymes, in Inositol Phosphates, Their Chemistry, Biochemistry, and Physiology, pp. 99–105, Elsevier, Amsterdam.Google Scholar
  18. Costello, A.J.R., Glonek, T., and Myers, T. C., 1976, 31P nuclear magnetic resonance—pH titrations of myo-inositol hexaphosphate, Carbohydrate Res. 46:159–171.CrossRefGoogle Scholar
  19. Coté, G. G., and Crain, R. C., 1993, Biochemistry of phosphoinositides, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356.CrossRefGoogle Scholar
  20. Dean-Johnson, M., and Henry, S. A., 1989, Biosynthesis of inositol in yeast: Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus, J. Biol. Chem. 264:1274–1283.PubMedGoogle Scholar
  21. Dreef, C. E., Mayr, G. W., Jansze, J.-P., Roelen, H.C.P.F., Van der Marel, G. A., and van Boom, J. H., 1991a, An expeditious synthesis of biologically important myo-inositol phosphorothioates, Bioorg. Med. Chem. Lett. 1:239–242.CrossRefGoogle Scholar
  22. Dreef, C. E., Schiebier, W., van der Marel, G. A., and van Boom J., 1991b, Synthesis of 5-Phosphorate analogs of myo-inositol 1,4,5-trisphosphate: Possible intracellular calcium antagonists. Tetrahedron Lett. 32:6021–6024.CrossRefGoogle Scholar
  23. Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:697–712.PubMedGoogle Scholar
  24. Drøbak, B. K., 1993, Plant phosphoinositides and intracellular signaling, Plant Physiol. 102:705–709.PubMedGoogle Scholar
  25. Drøbak, B. K., Watkins, P.A.C., Chattaway, J. A., Roberts, K., and Dawson, A. P., 1991, Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots, Plant Physiol. 95:412–419.PubMedCrossRefGoogle Scholar
  26. Emsley, J., and Niazi, S., 1981, The structure of myo- inositol hexaphosphate in solution: 31P.N.M.R. investigation, Phosphorus Sulfur 10:401–408.CrossRefGoogle Scholar
  27. Gibson, D. M., and Ullah, A.B.J., 1990, Phytases and their action on phytic acid, in Inositol Metabolism in Plants, (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 77–92, Wiley-Liss, New York.Google Scholar
  28. Gilroy, S., Read, N. D., and Trewavas, A. J., 1990, Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure, Nature 346:769–771.PubMedCrossRefGoogle Scholar
  29. Greenwood, J. S., and Bewley, J. D., 1984, Subcellular distribution of phytin in the endosperm of developing castor bean: A possibility for its synthesis in the cytoplasm prior to deposition within protein bodies, Planta 160:113–120.CrossRefGoogle Scholar
  30. Gurney, A. M., and Lester, H. A., 1987, Light-flash physiology with synthetic photosensitive compounds, Physiol. Rev. 67:583–617.PubMedGoogle Scholar
  31. Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.PubMedGoogle Scholar
  32. Henne, V., Mayr, G. W., Grawowski, B., Koppitz, B., and Soeling, H.-D., 1988, Semisynthetic derivatives of inositol 1,4,5-trisphosphate substituted at the 1-phosphate group. Effect on calcium release from permeabilized guinea pig parotid acinar cells and comparison with binding to aldolase A, Eur. J. Biochem. 194:95–101.CrossRefGoogle Scholar
  33. Hetherington, A. M., and Drøbak, B. K., 1992, Inositol-containing lipids in higher plants, Prog. Lipid Res. 31:53–63.PubMedCrossRefGoogle Scholar
  34. Hoffmann-Ostenhof, O., and Pittner, F., 1982, Biosynthesis of myo-inositol and its isomers, Can. J. Chem. 60:1863–1871.CrossRefGoogle Scholar
  35. Huang, C.-H., Yan, A.K.F., Crain, R. C., and Coté, G. C., 1994, Phosphoinositide specific phospholipase C in oat roots, Plant Physiol. 105:105.Google Scholar
  36. Igaue, I., Shimizu, M., and Miyauchi, S., 1980, Formation of a series of myo-inositol phosphates during growth of rice plant cells in suspension culture, Plant Cell Physiol. 21:351–356.Google Scholar
  37. Igaue, I., Miyauchi, S., and Saito, K., 1982, Formation of myo-inositol phosphates in a rice cell suspension culture, in Proceedings of the 5th International Congress of Plant Tissue and Cell Culture, (A. Fujwara, ed.) pp. 265–266, Mauruzen, Tokyo.Google Scholar
  38. Irvine, R. F., Letcher, A. J., and Rawson, R.M.C., 1980, Phosphatidylinositol phosphodiesterase in higher plants, Biochem. J. 192:279–283.PubMedGoogle Scholar
  39. Isaacks, R. E., and Harkness, D. R., 1980, Erythrocyte organic phosphates and hemoglobin function in birds, reptiles and fishes, Am. Zool. 20:115–129.Google Scholar
  40. IUB Nomenclature Committee, 1989, Numbering of atoms in myo-inositol, Biochem. J. 258:1–2.Google Scholar
  41. IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature, 1976, Nomenclature of cyclitols, Biochem. J. 153:23–31.Google Scholar
  42. IUPAC-IUB Enzyme Nomenclature Recommendation, 1975, Supplement 1: Corrections and additions, Biochim. Biophys. Acta 429:1–2.Google Scholar
  43. Joseph, S. K., Esch, T., and Bonner, W. D., Jr., 1989, Hydrolysis of inositol phosphates by plant cell extracts, Biochem. J. 264:851–856.PubMedGoogle Scholar
  44. Lampe, D., and Potter, B.V.L., 1990, Synthesis of myo-inositol-1-phosphorothioate 4,5-bisphosphate: Preparation of a fluorescently labeled myo-inositol 1,4,5-trisphosphate analog, J. Chem. Soc. Chem. Commun. 1500–1501.Google Scholar
  45. Lim, P. E., and Tate, M. E., 1973, The Phytases II. Properties of phytase fraction F1 and F2 from wheat bran and myo-inositol phosphates produced by fraction F2, Biochim. Biophys. Acta 302:316–328.PubMedGoogle Scholar
  46. Lin, J.-J., Dickinson, D. B., and Ho, T.-H. D., 1987, Phytic acid metabolism in lily (Lilium longiflorum Thumb.) pollen, Plant Physiol. 83:408–413.PubMedCrossRefGoogle Scholar
  47. Loewus, F. A., 1990a, Inositol biosynthesis, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), Wiley-Liss, New York, pp. 13–19.Google Scholar
  48. Loewus, F. A., 1990b, Structure and occurrence of inositol in plants, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), Wiley-Liss, New York, pp. 1–11.Google Scholar
  49. Loewus, F., and Dickinson, D. B., 1982, Cyclitols, in Encyclopedia of Plant Physiology: Vol. 13A, Plant Carbohydrates I: Intracellular Carbohydrates (F. A. Loewus, and W. Tanner, eds.), pp. 193–206, Springer-Verlag, Berlin.Google Scholar
  50. Loewus, F. A., and Kelly, S., 1962, Conversion of glucose to inositol in parsley leaves, Biochem. Biophys. Res. Commun. 7:204–208.PubMedCrossRefGoogle Scholar
  51. Loewus, F. A., and Loewus, M. W., 1983, myo-Inositol: Its biosynthesis and metabolism, Annu. Rev. Plant Physiol. 34:137–161.CrossRefGoogle Scholar
  52. Loewus, F. A., Everard, J. D., and Young, K. A., 1990, Inositol metabolism: Precursor role and breakdown, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 21–45, Wiley-Liss, New York.Google Scholar
  53. Loewus, M. W., and Loewus, F. A., 1982, myo-Inositol-1-phosphatase from the pollen of Lilium longiflorum Thumb., Plant Physiol. 70: 765–770.PubMedCrossRefGoogle Scholar
  54. Maga, J. A., 1982, Phytate: Its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis, J. Agric. Food Chem. 30:1–9.CrossRefGoogle Scholar
  55. Majerus, P. W., Connolly, T. M., Bansal, V S., Inhorn, R. C., Ross, T. S., and Lips, D. L., 1988, Inositol phosphates: Synthesis and degradation, J. Biol. Chem. 263:3051–3054.PubMedGoogle Scholar
  56. Majumdar, A.N.L., and Biswas, B. B., 1973, Further characterization of phosphoinositol kinase isolated from germinating mung bean seeds, Phytochemistry 12:315–319.CrossRefGoogle Scholar
  57. Majumdar, A.N.L., Mandai, N. C., and Biswas, B. B., 1972, Phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 11:503–508.CrossRefGoogle Scholar
  58. Martinoia, E., Locher, R., and Vogt, E., 1993, Inositol trisphosphate metabolism in subcellular fractions of barley (Hordeum vulgare L.) mesophyll cells, Plant Physiol. 102:101–105.PubMedGoogle Scholar
  59. Mayr, G. W., Radenberg, T., Theil, U., Vogel, G., and Stephens, L. R., 1992, Phosphoinositol disphosphates: Non-enzymic formation in vitro and occurrence in vivo in the cellular slime mold Dictyostelium, Carbohydrate Res. 234:247–262.CrossRefGoogle Scholar
  60. Melin, P. M., Pical, C., Tergil, B., and Sommarin, M., 1992, Phosphoinositide phospholipase C in wheat root plasma membranes. partial purification and characterization, Biochim. Biophys. Acta 1123:163–169.PubMedGoogle Scholar
  61. Memon, A. R., Rincon, M., and Boss, W. F., 1989, Inositol trisphosphate metabolism in carrot (Daucus carota L.) cells, Plant Physiol. 91:477–480.PubMedCrossRefGoogle Scholar
  62. Menniti, F. S., Miller, R. N., Putney, J. W., Jr., and Shears, S. B., 1993a, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells, J. Biol. Chem. 268:3850–3856.PubMedGoogle Scholar
  63. Menniti, F. S., Oliver, K. G., Putney, J. W., Jr., and Shears, S. B., 1993b, Inositol phosphates and cell signaling: New views of InsP5 and InsP6, Trends Biochem. Sci. 18:53–56.PubMedCrossRefGoogle Scholar
  64. Parthasarathy, R., and Eisenberg, F., Jr., 1986, The inositol phospholipids: A stereochemical view of biological activity, Biochem. J. 235:313–322.PubMedGoogle Scholar
  65. Parthasarathy, R., and Eisenberg, F., Jr., 1990, Biochemistry, stereochemistry, and nomenclature of the inositol phosphates, in Inositol Phosphates and Derivatives: Synthesis, Biochemistry, and Therapeutic Potential (A. B. Reitz, ed.), pp. 1–19, ACS Symposium Series 463, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  66. Pasternak, T., 1965, The Cyclitols, pp. 341–351, Holden-Day, San Francisco.Google Scholar
  67. Pen, J., Verwoerd, T. C., van Paridon, P. A., Beudeker, R. F., van den Elzen, P.J.M., Geerse, K. van der Klis, J. D., Versteegh, H.A.J., van Ooyen, A.J.J., and Hoekema, A., 1993, Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization, Bio/Technology 11:811–814.CrossRefGoogle Scholar
  68. Prestwich, G. D., Marecek, J., Mourey, R. J., Theibert, A. B., Ferris, C. D., Danoff, S. K., and Snyder, S. H., 1991, Tethered IP3, synthesis and biochemical application of the 1-D-(3-aminopropyl)ester of inositol (1,4,5)trisphosphate, J. Am. Chem. Soc. 113:1822.CrossRefGoogle Scholar
  69. Raboy, V., 1990, Biochemistry and genetics of phytic acid synthesis, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 55–76, Wiley-Liss, New York.Google Scholar
  70. Reitz, A. B., 1991, Inositol Phosphates and Derivatives, ACS Symposium Series 463. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  71. Rincon, M., and Boss, W. F., 1990, Second messenger role of phosphoinositides, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 173–200, Wiley-Liss, ew York.Google Scholar
  72. Roberts, R. M., and Loewus, F., 1968, Inositol metabolism in plants. VI. Conversion of myo-inositol to phytic acid in Wolffiella floridana, Plant Physiol. 43:1710–1716.PubMedCrossRefGoogle Scholar
  73. Safrany, S. T., Wojcikiewicz, R.J.H., Strupish, J., McBain, J., Cooke, A., Potter, B.V.L., and Nahorski, S. R., 1991, Synthetic phosphorothioate-containing analogs of inositol 1,4,5-trisphosphate mobilize intracellular calcium stores and interact differentially with inositol 1,4,5-trisphosphate 5-phosphatase and 3-kinase, Mol. Pharmacol. 39:754–761.PubMedGoogle Scholar
  74. Schäfer, R., Nehls-Sahabandu, M., Grabowski, B., Dehlinger-Kremer, M., and Mayr, G. W., 1990, Synthesis and application of photoaffinity analogues of inositol 1,4,5-trisphosphate selectively substituted at the 1-phosphate group, Biochem. J. 272:817–825.PubMedGoogle Scholar
  75. Schumaker, K. S., and Sze, H., 1987, Inositol 1,4,5-trisphosphate releases Ca++ from vacuolar membrane vesicles of oat roots, J. Biol. Chem. 262:3944–3946.PubMedGoogle Scholar
  76. Scott, J. J., 1991, Alkaline phytase activity in nonionic detergent extracts of legume seeds, Plant Physiol. 95:1298–1301.PubMedCrossRefGoogle Scholar
  77. Scott, J. J., and Loewus, F. A., 1986, Phytate metabolism in plants, in Phytic Acid: Chemistry and Applications (E. Graf, ed.), pp. 23–42, Pilatus Press, Minneapolis.Google Scholar
  78. Stephens, L. R., and Irvine, R. F., 1990, Stepwise phosphorylation of myo=inositol leading to myo-inositol hexakisphosphate in Dictyostelium, Nature 346:580–583.PubMedCrossRefGoogle Scholar
  79. Stephens, L. R., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T. R., Hawkins, P. T., and Mayr, G. W., 1993, The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetra-kisphosphate(s), J. Biol. Chem. 268:4009–4015.PubMedGoogle Scholar
  80. Tarczynski, M. C., Jensen, R. G., and Bohnert, H. J., 1993, Stress protection of transgenic tobacco by production of the osmolyte mannitol, Science 259:508–510.PubMedCrossRefGoogle Scholar
  81. Taylor, C. W., Berridge, M. J., Cooke, A. M., and Potter, B.V.L., 1988, DL-myo-Inositol 1,4,5-trisphosphorothioate mobilizes intracellular calcium in Swiss 3T3 cells and Xenopus oocytes, Biochem. Biophys. Res. Commun. 150:626–632.PubMedCrossRefGoogle Scholar
  82. Taylor, C. W., Berridge, M. J., Cooke, A. M., and Potter, B.V.L., 1989, Inositol 1,4,5-trisphosphorothioate, a stable analog of inositol trisphosphate which mobilizes intracellular calcium, Biochem. J. 259:645–650.PubMedGoogle Scholar
  83. Tomlinson, R. V., and Ballou, C. E., 1962, myo-inositol polyphosphate intermediates in the de-phosphorylation of phytic acid by phytase, Biochemistry 1:166–171.PubMedCrossRefGoogle Scholar
  84. Tsien, R. Y., and Zucker, R. S., 1986, Control of cytoplasmic calcium with photolabile tetracar-oxylate 2-nitrobenzhydrol chelators, Biophys. J. 50:843–853.PubMedCrossRefGoogle Scholar
  85. Vallejo, M., Jackson, T., Lightman, S., and Hanley, M. R., 1988, Occurrence and extracellular actions of inositol pentakis and hexakis-phosphate in mammalian brain, Nature 330:656–658.CrossRefGoogle Scholar
  86. van Hartingsveldt, W., van Zeijl, C.M.J., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M.E.G., Luiten, R.G.M., van Paridon, P. A., Selten, G.C.M., Veenstra, A. E., van Gorcom, R.F.M., and van den Hondel, C.A.M.J.J., 1993, Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger, Gene 127:87–94.PubMedCrossRefGoogle Scholar
  87. Vernon, D. M., Tarczynski, M. C., Jensen, R. G., and Bohnert, H. J., 1993, Cyclitol production in transgenic tobacco, Plant J. 4:199–205.CrossRefGoogle Scholar
  88. Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P., and Trentham, D. R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate, Nature 327:249–252.PubMedCrossRefGoogle Scholar
  89. Willcocks, A. L., Potter, B.V.L., Cooke, A. M., and Nahorski, S. R., 1988, Myo-inositol (1,4,5) trisphosphorothiorate binds to specific [3H]inositol (1,4,5) trisphosphate sites in rat cerebellum and is resistant to 5-phosphatase, Eur. J. Pharmacol. 155:181–183.PubMedCrossRefGoogle Scholar
  90. Wojckiewicz, R.J.H., Cooke, A. M., Potter, B.V.L., and Nahorski, S. R., 1990, Inhibition of inositol 1,4,5-trisphosphate metabolism in permeabilized SH-5Y5Y human neuroblastoma cells by a phosphorothioate-containing analog of inositol 1,4,5-trisphosphate, Eur. J. Biochem. 192:459–467.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Pushpalatha P. N. Murthy
    • 1
  1. 1.Chemistry DepartmentMichigan Technological UniversityHoughtonUSA

Personalised recommendations