Protein Phosphorylation and Signal Transduction

  • Sailen Barik
Part of the Subcellular Biochemistry book series (SCBI, volume 26)


The phenotype and behavior of a cell, just as those of the organism in which it resides, are constantly influenced by a variety of external signals that eventually determine such apparently diverse phenomena as cellular taxis, proliferation, differentiation, and even death (apoptosis). The corresponding extracellular signals are equally varied, e.g., nutrient flux, hormones, peptide growth factors, interferons and other cytokines, and antigens. The term “signal transduction” refers to the acquisition and subsequent transmission of a given signal.


Tyrosine Kinase Protein Phosphatase Protein Tyrosine Phosphatase Inositol Phosphate Myosin Light Chain Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aderem, A., 1992, Signal transduction and the actin cytoskeleton: The roles of MARCKS and profilin, Trends Biochem. Sci. 17:438–443.PubMedGoogle Scholar
  2. Aiba, H., and Mizuno, T., 1990, Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli, FEBS Lett. 261:19–22.PubMedGoogle Scholar
  3. Alvarez, E., Northwood, I. C., Gonzalez, F. A., Latour, D. A., Seth, A., Abate, C., Curran, T., and Davis, R. J., 1991, Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase, J. Biol. Chem. 266:15277–15285.PubMedGoogle Scholar
  4. Arndt, K. T., Styles, C. A., and Fink, G. R., 1989, A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases, Cell 56:527–537.PubMedGoogle Scholar
  5. Arpaia, E., Shahar, M., Dadi, H., Cohen, A., and Roifman, C. M., 1994, Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase, Cell 76:947–958.PubMedGoogle Scholar
  6. Axton, J. M., Dombradi, V., Cohen, P. T., and Glover, D. M., 1990, One of the protein phosphatase 1 isoenzymes in Drosophila is essential for mitosis, Cell 63:33–46.PubMedGoogle Scholar
  7. Baeuerle, P. A., and Baltimore, D., 1988, IκB: a specific inhibitor of the NF-κB transcription factor, Science 242:540–546.PubMedGoogle Scholar
  8. Banerjee, A. K., and Barik, S., 1992, Minireview: Gene expression of vesicular stomatitis virus genome RNA, Virology 188:417–428.PubMedGoogle Scholar
  9. Barford, D., Flint, A. J., and Tonks, N. K., 1994, Crystal structure of human protein tyrosine phosphatase 1B, Science 263:1397–1403.PubMedGoogle Scholar
  10. Barik, S., 1993, Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage λ, Proc. Natl. Acad. Sci. U.S.A. 90:10633–10637.PubMedGoogle Scholar
  11. Barik, S., and Banerjee, A. K., 1992a, Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P, Proc. Natl. Acad. Sci. U.S.A. 89:6570–6574.PubMedGoogle Scholar
  12. Barik, S., and Banerjee, A. K., 1992b, Sequential phosphorylation of the phosphoprotein of vesicular stomatitis virus by cellular and viral protein kinases is essential for transcription activation, J. Virol. 66:1109–1118.PubMedGoogle Scholar
  13. Baudier, J., Deloulme, J. C., Van Dorsselaer, A., Black, D., and Matthes, H. W., 1991, Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain, J. Biol. Chem. 266:229–237.PubMedGoogle Scholar
  14. Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signaling, Nature 341:197–205.PubMedGoogle Scholar
  15. Birge, R. B., and Hanafusa, H., 1993, Closing in on SH2 specificity, Science 262:1522–1524.PubMedGoogle Scholar
  16. Bishop, J. M., 1991, Molecular themes in oncogenesis, Cell 64:235–248.PubMedGoogle Scholar
  17. Blank, J. L., Ross, A. H., and Exton, J. H., 1991, Purification and characterization of two G proteins that activate the β1 isozyme of phosphoinositide-specific phospholipase C. Identification as members of the Gq class, J. Biol. Chem. 266:18206–18216.PubMedGoogle Scholar
  18. Boguski, M. S., and McCormick, F., 1993, Proteins regulating Ras and its relatives, Nature 366:643–654.PubMedGoogle Scholar
  19. Bohman, D., 1990, Transcription factor phosphorylation: A link between signal transduction and the regulation of gene expression, Cancer Cells 2:337–344.Google Scholar
  20. Bourret, R. B., Borkovich, K. A., and Simon, M. I., 1991, Signal transduction pathways involving protein phosphorylation in prokaryotes, Annu. Rev. Biochem. 60:401–441.PubMedGoogle Scholar
  21. Brautigan, D. L., Fernandez, A., and Lamb, N.J.C., 1989, Microinjection of protein phosphatase type-1 selectively alters fibroblast functions and in vivo phosphorylation, Adv. Prot. Phosphatases 5:547–566.Google Scholar
  22. Brautigan, D. L., Sunwoo, J., Labbe, J. C., Fernandez, A., and Lamb, N. J., 1990, Cell cycle oscillation of phosphatase inhibitor-2 in rat fibroblasts coincident with p34cdc2 restriction, Nature 344:74–78.PubMedGoogle Scholar
  23. Brown, N. H., and Hartley, D. A., 1994, Exploring signaling pathways, Nature 370:414–415.PubMedGoogle Scholar
  24. Butler, T. M., Ziemiecki, A., and Friis, R. R., 1990, Megakaryocytic differentiation of K562 cells is associated with changes in the cytoskeletal organization and the pattern of chromatographically distinct forms of phosphotyrosyl-specific protein phosphatases, Cancer Res.50:6323–6329.PubMedGoogle Scholar
  25. Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S., 1991, Oncogenes and signal transduction, Cell 64:281–302.PubMedGoogle Scholar
  26. Charbonneau, H., and Tonks, N. K., 1992, 1002 protein phosphatases?, Annu. Rev. Cell Biol. 8:463–493.PubMedGoogle Scholar
  27. Choi, K.-Y., Satterberg, B., Lyons, D. M., and Elion, E. A., 1994, Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae, Cell 78:499–512.PubMedGoogle Scholar
  28. Ciccetti, P., Mayer, B. J., Thiel, G., and Baltimore, D., 1992, Identification of a protein that binds to the SH3 region of AbI and is similar to Bcr and GAP-rho, Science 257:803–806.Google Scholar
  29. Coggins, P. J., and Zwiers, 1991, B-50 (GAP-43): Biochemistry and functional neurochemistry of a neuron-specific phosphoprotein, J. Neurochem. 56:1095–1106.PubMedGoogle Scholar
  30. Cohen, P., 1989, The structure and regulation of protein phosphatases, Annu. Rev. Biochem. 58:453–508.PubMedGoogle Scholar
  31. Cohen, P. T., and Cohen, P., 1989, Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221, Biochem. J. 260:931–934.PubMedGoogle Scholar
  32. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R., 1994, Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis, Science 265:1405–1412.PubMedGoogle Scholar
  33. Cooper, J. A., and Howell, B., 1993, The when and how of Src regulation, Cell 73:1051–1054.PubMedGoogle Scholar
  34. Crews, C. M., and Erikson, R. L., 1993, Extracellular signals and reversible protein phosphorylation: What to Mek of it all, Cell 74:215–217.PubMedGoogle Scholar
  35. Cross, F. R., Garber, E. A., Pellman, D., and Hanafusa, H., 1984, A short sequence in the p60src N terminus is required for p60src myristoylation and membrane association and for cell transformation, Mol. Cell. Biol. 4:1834–1842.PubMedGoogle Scholar
  36. Cross, M., and Dexter, T. M., 1991, Growth factors in development, transformation, and tumori-genesis, Cell 64:271–280.PubMedGoogle Scholar
  37. Cyert, M. S., and Thorner, J., 1989, Putting it on and taking it off: Phosphoprotein phosphatase involvement in cell cycle regulation, Cell 57:891–893.PubMedGoogle Scholar
  38. David, M., and Lamer, A. C., 1992, Activation of transcription factors by interferon-alpha in a cell-free system, Science 257:813–815.PubMedGoogle Scholar
  39. Dawson, T. M., Steiner, J. P., Dawson, V. L., Dinerman, J. L., Uhl, G. R., and Snyder, S. H., 1993, Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity, Proc. Natl. Acad. Sci. U.S.A. 90:9808–9812.PubMedGoogle Scholar
  40. Divecha, N., Banfic, H., and Irvine, R. F., 1993, Inositides and the nucleus and inositides in the nucleus, Cell 74:405–407.PubMedGoogle Scholar
  41. Dohadwala, M., da Cruz e Silva, E. F., Hall, F. L., Williams, R. T., Carbonaro-Hall, D. A., Nairn, A. C., Greengard, P., and Berndt, N., 1994, Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases, Proc. Natl. Acad. Sci. U.S.A. 91:6408–6412.PubMedGoogle Scholar
  42. Drubin, D. G., Mulholland, J., Zhu, Z., and Botstein, D., 1990, Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I, Nature 343:288–290.PubMedGoogle Scholar
  43. Ely, C. M., Oddie, K. M., Litz, J. S., Rossomando, A. J., Kanner, S. B., Sturgill, T. W., and Parsons, S. J., 1990, A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kD mitogen-stimulated protein in fibroblasts, J. Cell Biol. 110:731–742.PubMedGoogle Scholar
  44. Fanti, W. J., Johnson, D. E., and Williams, L. T., 1993, Signaling by receptor tyrosine kinases, Annu. Rev. Biochem. 62:453–481.Google Scholar
  45. Feaver, W. J., Gileadi, O., Li, Y., and Kornberg, R. D., 1991, CTD kinase associated with yeast RNA polymerase II initiation factor b, Cell 67:1223–1230.PubMedGoogle Scholar
  46. Fernandez-Sarabia, M. J., Sutton, A., Zhong, T., and Arndt, K. T., 1992, SIT4 protein phosphatase is required for the normal accumulation of SW14, CLN1, CLN2 and HCS26 RNAs during late G1, Genes Dev. 6:2417–2428.PubMedGoogle Scholar
  47. Firmbach-Kraft, I., Byers, M., Shows, T., Dalla-Favera, R., and Krolewski, J. J., 1990, tyk2, prototype of a novel class of non-receptor tyrosine kinase genes, Oncogene 5:1329–1336.PubMedGoogle Scholar
  48. Forst, S., Delgado, J., Rampersaud, A., and Inouye, M., 1990, In vivo phosphorylation of OmpR, the transcription activator of the ompF and ompC genes in Escherichia coli, J. Bacteriol. 172:3473–3477.PubMedGoogle Scholar
  49. Frangioni, J. V., Oda, A., Smith, M., Salzman, E. W., and Neel, B. G., 1993, Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase IB (PTP-1B) in human platelets, EMBO J. 12:4843–4856.PubMedGoogle Scholar
  50. Fu, X. Y., 1992, A transcription factor with SH2 and SH3 domains is directly activated by an interferon α-induced cytoplasmic protein tyrosine kinase(s), Cell 70:323–335.PubMedGoogle Scholar
  51. Fu, X. Y., and Zhang, J. J., 1993, Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter, Cell 74:1135–1145.PubMedGoogle Scholar
  52. Gardner, A. M., Vaillancourt, R. R., and Johnson, G. L., 1993, Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase by G protein and tyrosine kinase oncoproteins, J. Biol. Chem. 268:17896–17901.PubMedGoogle Scholar
  53. Gegner, J. A., and Dahlquist, F. W., 1991, Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA, Proc. Natl. Acad. Sci. U.S.A. 88:750–754.PubMedGoogle Scholar
  54. Ghosh, S., and Baltimore, D., 1990, Activation in vitro of NF-KB by phosphorylation of its inhibitor IκB, Nature 344:678–682.PubMedGoogle Scholar
  55. Goldschmidt-Clermont, P. J., Kim, J. W., Machesky, L. M., Rhee, S. G., and Pollard, T. D., 1991, Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation, Science 251:1231–1233.PubMedGoogle Scholar
  56. Gonzalez, G. A., Menzel, P., Leonard, J., Fischer, W. H., and Montminy, M. R., 1991, Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB, Mol. Cell. Biol. 11:1306–1312.PubMedGoogle Scholar
  57. Gould, K. L., Bretscher, A., Esch, F. S., and Hunter, T., 1989, cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1, EMBO J. 8:4133–4142.PubMedGoogle Scholar
  58. Gould, K. L., Moreno, S., Tonks, N. K., and Nurse, P., 1990, Complementation of the mitotic activator, p80cdc25, by a human protein-tyrosine phosphatase, Science 250:1573–1576.PubMedGoogle Scholar
  59. Guan, K. L., and Dixon, J. E., 1991, Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate, J. Biol. Chem. 266:17026–17030.PubMedGoogle Scholar
  60. Guan, K. L., Huan, R. S., Watson, S. J., Geahlen, R. L., and Dixon, J. E., 1990, Cloning and expression of a protein-tyrosine-phosphatase, Proc. Natl. Acad. Sci. U.S.A. 87:1501–1505.PubMedGoogle Scholar
  61. Gutkind, J. S., Lacal, P. M., and Robbins, K. C., 1990, Thrombin-dependent association of phosphatidylinositol-3 kinase and p60c-src and p59fyn in human platelets, Mol. Cell. Biol. 10:3806–3809.PubMedGoogle Scholar
  62. Hagiwara, M., Alberts, A., Brindle, P., Meinkoth, J., Feramisco, J., Deng, T., Karin, M., Shenolikar, S., and Montminy, M., 1992, Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB, Cell 70:105–113.PubMedGoogle Scholar
  63. Hall, A., 1990, ras and GAP—who’s controlling whom?, Cell 61:921–923.PubMedGoogle Scholar
  64. Halpain, S., Girault, J. A., and Greengard, P., 1990, Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices, Nature 343:369–372.PubMedGoogle Scholar
  65. Hanks, S. K., Quinn, A. M., and Hunter, T., 1988, The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains, Science 241:42–52.PubMedGoogle Scholar
  66. Harlan, D. M., Graff, J. M., Stumpo, D. J., Eddy, R. L., Jr., Shows, T. B., Boyle, J. M., and Blackshear, P. J., 1991, The human myristoylated alanine-rich C kinase substrate (MARCKS) gene (MACS), J. Biol. Chem. 266:14399–14405.PubMedGoogle Scholar
  67. Hartwig, J. H., Thelen, M., Rosen, A., Jammey, P. A., Nairn, A. C., and Aderem, A., 1992, MARKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin, Nature 356:618–622.PubMedGoogle Scholar
  68. Heidecker, G.. Kolch, W., Morrison, D. K., and Rapp, U. R., 1992, The role of Raf-1 phosphorylation in signal transduction, Adv. Cancer Res. 58:53–73.PubMedGoogle Scholar
  69. Hemmings, H. C., Jr., Greengard, P., Tung, H.Y.L., and Cohen, P., 1984, DARPP-32, a dopamine regulated neuronal phosphoprotein is a potent inhibitor of protein phosphatase 1, Nature 310:503–505.PubMedGoogle Scholar
  70. Honkanen, R. E., and Boynton, A. L., 1994, Serine/threonine protein phosphatases and their inhibitors, in Protein Kinase C (J. F. Kuo, ed.), pp. 305–324, Oxford University Press, New York.Google Scholar
  71. Honkanen, R. E., Zwiller, J., Daily, S. L., Khatra, B. S., Dukelow, M., and Boynton, A. L., 1991, Identification, purification, and characterization of a novel serine/threonine protein phosphatase from bovine brain, J. Biol. Chem. 266:6614–6619.PubMedGoogle Scholar
  72. Huang, F. L., and Glinsmann, W. H., 1976, Separation and characterization of two Phosphorylase phosphatase inhibitors from rabbit skeletal muscle, Eur. J. Biochem. 70:419–426.PubMedGoogle Scholar
  73. Huang, W., Alessandrini, A., Crews, C. M., and Erikson, R. L., 1993, Raf-1 forms a stable complex with Mekl and activates Mekl by serine phosphorylation, Proc. Natl. Acad. Sci. U.S.A. 90:10947–10951.PubMedGoogle Scholar
  74. Hunter, T., 1991, Cooperation between oncogenes, Cell 64:249–270.PubMedGoogle Scholar
  75. Hunter, T., and Karin, M., 1992, The regulation of transcription by phosphorylation, Cell 70:375–387.PubMedGoogle Scholar
  76. Hunter, T., Angel, P., Boyle, W. J., Chiu, R., Freed, E., Gould, K. L., Isacke, C. M., Karin, M., Lindberg, R. A., and van der Geer, P., 1988, Targets for signal-transducing protein kinases, Cold Spring Harbor Symp. Quant. Biol. 53:131–142.PubMedGoogle Scholar
  77. Ikeda, T. P., Houtz, E., and LaPorte, D. C., 1992, Isocitrate dehydrogenase kinase/phosphatase: Identification of mutations which selectively inhibit phosphatase activity, J. Bacteriol. 174:1414–1416.PubMedGoogle Scholar
  78. Ingebritsen, T. S., and Cohen, P., 1983, Protein phosphatases: properties and role in cellular regulation, Science 221:331–338.PubMedGoogle Scholar
  79. Kamps, M. P., Buss, J. E., and Sefton, B. M., 1985, Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation, Proc. Natl. Acad. Sci. U.S.A. 82:4625–4628.PubMedGoogle Scholar
  80. Kennedy, M., 1989, Regulation of neuronal function by calcium, Trends Neurosci. 12:417–420.PubMedGoogle Scholar
  81. Kennelly, P. J., and Krebs, E. G., 1991, Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases, J. Biol. Chem. 266:15555–15558.PubMedGoogle Scholar
  82. Kerr, L. D., Inoue, J., Davis, N., Link, E., Baeuerle, E. A., Bose, H. R., Jr., and Verma, I. M., 1991, The Rel-associated pp40 protein prevents DNA-binding of Rel and NF-κB: Relationship with IκBβ and regulation by phosphorylation, Genes Dev. 5:1464–1476.PubMedGoogle Scholar
  83. Kim, H. K., Kim, J. W., Zilberstein, A., Margolis, B., Kim, J. G., Schlessinger, J., and Rhee, S. G., 1991, PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254, Cell 65:435–441.PubMedGoogle Scholar
  84. King, M. M., Huang, C. Y., Chock, P. B., Nairn, A. C., Hemmings, H. C., Jr., Jesse Chan, K. F., and Greengard, P., 1984, Mammalian brain phosphoproteins as substrates for calcineurin, J. Biol. Chem. 259:8080–8083.PubMedGoogle Scholar
  85. Kinoshita, N., Ohkura, H., and Yanagida, M., 1990, Distinct, essential roles of type 1 and 2A protein phosphatases in the control of the fission yeast cell division cycle, Cell 63:405–415.PubMedGoogle Scholar
  86. Klee, C. B., and Cohen, P., 1988, The calmodulin-regulated protein phosphatase, Mol. Aspects Cell. Regul. 5:225–248.Google Scholar
  87. Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., and Pawson, T., 1991, SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins, Science 252:668–674.PubMedGoogle Scholar
  88. Kolch, W., Heidecker, G., Lloyd, P., and Rapp, U. R., 1991, Raf-1 protein kinase is required for growth of induced NIH/3T3 cells, Nature 349:426–428.PubMedGoogle Scholar
  89. Koretzky, G. A., Picus, J., Thomas, M. L., and Weiss, A., 1990, Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway, Nature 346:66–68.PubMedGoogle Scholar
  90. Kypta, R. M., Goldberg, Y., Ulug, E. T., and Courtneidge, S. A., 1990, Association between the PDGF receptor and members of the src family of tyrosine kinases, Cell 62:481–492.PubMedGoogle Scholar
  91. Lange-Carter, C. A., and Johnson, G. L., 1994, Ras-dependent growth factor regulation of MEK kinase in PC12 cells, Science 265:1458–1461.PubMedGoogle Scholar
  92. Lee, C. Q., Yun, Y. D., Hoeffler, J. P., and Habener, J. F., 1990, Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phosphorylated subdomains, EMBO J. 9:4455–4465.PubMedGoogle Scholar
  93. Lee, J. M., and Greenleaf, A. L., 1991, CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae, Gene Expr. 1:149–167.PubMedGoogle Scholar
  94. Lefkowitz, R. J., 1993, G protein-coupled receptor kinases, Cell 74:409–412.PubMedGoogle Scholar
  95. Lin, A., Frost, J., Deng, T., Smeal, T, Al-Alawi, N., Kikkawa, U., Hunter, T, Brenner, D., and Karin, M., 1992, Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity, Cell 70:777–789.PubMedGoogle Scholar
  96. Link, E., Kerr, L. D., Schreck, R., Zabel, U., Verma, I. M., and Baeuerle, P. A., 1992, Purified IκB-β is inactivated upon dephosphorylation, J. Biol. Chem. 267:239–246.PubMedGoogle Scholar
  97. Lombroso, P. J., Murdoch, G., and Lerner, M., 1991, Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum, Proc. Natl. Acad. Sci. U.S.A. 88:7242–7246.PubMedGoogle Scholar
  98. Lowenstein, C. J., and Snyder, S. H., 1992, Nitric oxide, a novel biologic messenger, Cell 70:705–707.PubMedGoogle Scholar
  99. Lowy, D. R., and Willumsen, B. M., 1993, Function and regulation of RAS, Annu. Rev. Biochem. 62:851–891.PubMedGoogle Scholar
  100. Lu, H., Zawel, L., Fisher, L., Egly, J.-M., and Reinberg, D., 1992, Human general transcription factor IIH phosphorylate the C-terminal domain of RNA polymerase II, Nature 358:641–645.PubMedGoogle Scholar
  101. Luscher, B., Christenson, E., Litchfield, D. W., Krebs, E. G., and Eisenman, R. N., 1990, Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation, Nature 344:517–522.PubMedGoogle Scholar
  102. Lyons, J., Landis, C. A., Harsh, G., Vallar, L., Grunewald, K., Feichtinger, H., Duh, Q.-Y., Clark, O. H., Kawasaki, E., Bourne, H. R., and McCormick, F., 1990, Two G protein oncogenes in human endocrine tumors, Science 249:655–659.PubMedGoogle Scholar
  103. Mahoney, C. H., and Huang, K.-P., 1994, Molecular and catalytic properties of protein kinase C, in Protein Kinase C (J. F. Kuo, ed.), pp. 16–63, Oxford University Press, New York.Google Scholar
  104. Majerus, P. W., 1992, Inositol phosphate biochemistry, Annu. Rev. Biochem. 61:225–250.PubMedGoogle Scholar
  105. Mansour, S. J., Matten, W. T., Hermann, A. S., Candia, J. M., Rong, S., Fukasawa, K., Vande Wonde, R. F., and Ahn, N. G., 1994, Transformation of mammalian cells by constitutively active MAP kinase kinase, Science 265:966–969.PubMedGoogle Scholar
  106. Marais, R., Wynne, J., and Treisman, R., 1993, The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain, Cell 73:381–393.PubMedGoogle Scholar
  107. Matsuda, M., Mayer, B. J., Fukui, Y., and Hanafusa, H., 1990, Binding of transforming protein, p47gag-crk, to a broad range of phosphotyrosine-containing proteins, Science 248:1537–1539.PubMedGoogle Scholar
  108. Mazumder, B., and Barik, S., 1994, Requirement of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial virus phosphoprotein P: Transdominant negative phenotype of phosphorylation-defective P mutants, Virology 205:104–111.PubMedGoogle Scholar
  109. Mazumder, B., Adhikary, G., and Barik, S., 1994, Bacterial expression of human respiratory syncytial virus phosphoprotein P and identification of Ser237 as the site of phosphorylation by cellular casein kinase II, Virology 205:93–103.PubMedGoogle Scholar
  110. Meikrantz, W., Smith, D. M., Sladicka, M. M., and Schlegel, R. A., 1991, Nuclear localization of an O-glycosylated protein phosphotyrosine phosphatase from human cells, J. Cell Sci. 98:303–307.PubMedGoogle Scholar
  111. Mekalanos, J. J., 1992, Minireview: Environmental signals controlling expression of virulence determinants in bacteria, J. Bacteriol. 174:1–7.PubMedGoogle Scholar
  112. Millar, J.B.A., and Russell, P., 1992, The cdc25 M-phase inducer: An unconventional protein phosphatase, Cell 68:407–410.PubMedGoogle Scholar
  113. Minami, Y., Stafford, F. J., Lippincott-Schwartz, J., Yuan, L. C., and Klausner, R. D., 1991, Novel redistribution of an intracellular pool of CD45 accompanies T cell activation, J. Biol. Chem. 266:9222–9230.PubMedGoogle Scholar
  114. Mire-Sluis, A. R., and Thorpe, R., 1991, Interleukin-4 proliferative signal transduction involves the activation of a tyrosine-specific phosphatase and the dephosphorylation of an 80-kDa protein, J. Biol. Chem. 266: 18113–18118.PubMedGoogle Scholar
  115. Moncada, S., Palmer, R.M.J., and Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology, and pharmacology, Pharmacol. Rev. 43:109–142.PubMedGoogle Scholar
  116. Moodie, S. A., Willumsen, B. M., Weber, M. J., and Wolfman, A., 1993, Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase, Science 260:1658–1661.PubMedGoogle Scholar
  117. Morrison, D. K., Heidecker, G., Rapp, U. R., and Copeland, T. D., 1993, Identification of the major phosphorylation sites of the Raf-1 kinase, J. Biol. Chem.268: 17309–17316.PubMedGoogle Scholar
  118. Mosialos, G., Hamer, P., Capobianco, A. J., Laursen, R. A., and Gilmore, T. D., 1991, A protein kinase-A recognition sequence is structurally linked to transformation by p59v-rel and cytoplasmic retention of p68c-rel, Mol. Cell. Biol. 11:5867–5877.PubMedGoogle Scholar
  119. Mumby, M. C., and Walter, G., 1991, Protein phosphatases and DNA tumor viruses: Transformation through the back door?, Cell Regul. 2:589–598.PubMedGoogle Scholar
  120. Nellen, D., Affolter, M., and Basler, K., 1994, Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic, Cell 78:225–237.PubMedGoogle Scholar
  121. Ngai, J., Dowling, M. M., Buck, L., Axel, R., and Chess, A., 1993, The family of genes encoding odorant receptors in the channel fish, Cell 72:657–666.PubMedGoogle Scholar
  122. Nimmo, G. A., and Cohen, P., 1978, The regulation of glycogen metabolism: Phosphorylation of inhibitor-1 from rabbit skeletal muscle, and its interaction with protein phosphatases-III and II, Eur. J. Biochem. 87:353–365.PubMedGoogle Scholar
  123. Ninfa, A. J., and Bennett, R. L., 1991, Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII, J. Biol. Chem. 266:6888–68893.PubMedGoogle Scholar
  124. Nishida, E., and Gotoh, Y., 1993, The MAP kinase cascade is essential for diverse signal transduction pathways, Trends Biochem. Sci. 18:128–131.PubMedGoogle Scholar
  125. Nishizuka, Y., 1992, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C., Science 258:607–614.PubMedGoogle Scholar
  126. Noda, M., Selinger, Z., Scolnick, E. M., and Bassin, R. H., 1983, Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes, Proc. Natl. Acad. Sci. U.S.A. 80:5602–5606.PubMedGoogle Scholar
  127. Parkinson, J. S., 1993, Signal transduction schemes of bacteria, Cell 73:857–871.PubMedGoogle Scholar
  128. Pawson, T., and Gish, G. D., 1992, SH2 and SH3 domains: From structure to function, Cell 71:359–362.PubMedGoogle Scholar
  129. Pendergast, A. M., Quilliam, L. A., Cripe, L. D., Bassing, C. H., Dai, Z., Li, N., Batzer, A., Rabun, K. M., Der, C. J., Schlessinger, J., and Gishizky, M. L., 1993, BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein, Cell 75:175–185.PubMedGoogle Scholar
  130. Perlmutter, R. M., Levin, S. D., Appleby, M. W., Anderson, S. J., and Alberola-Ila, J., 1993, Regulation of lymphocyte function by protein phosphorylation, Annu. Rev. Immunol. 11:451–499.PubMedGoogle Scholar
  131. Perrimon, N., 1993, The torso receptor protein-tyrosine kinase signaling pathway: An endless story, Cell 74:219–222.PubMedGoogle Scholar
  132. Peterson, S. R., Dvir, A., Anderson, C. W., and Dynan, W. S., 1992, DNA-binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats, Genes Dev. 6:426–438.PubMedGoogle Scholar
  133. Pohl, U., Nolte, C., Bunse, A., Eigenthaler, M., and Walter, U., 1994, Endothelium-dependent phosphorylation of vasodilator-stimulated protein in platelets during coronary passage, Am. J. Physiol. 266:606–612.Google Scholar
  134. Popham, D., Szeto, D., Keener, J., and Kustu, S., 1989, Function of a bacterial protein that binds to transcriptional enhancers, Science 243:629–635.PubMedGoogle Scholar
  135. Pulverer, B. J., Kyriakis, J. M., Avruch, J., Nikolakaki, E., and Woodgett, J. R., 1991, Phosphorylation of c-Jun mediated by MAP kinases, Nature 353:670–674.PubMedGoogle Scholar
  136. Rana, R. S., and Hokin, L. E., 1990, Role of phosphoinositides in transmembrane signaling, Physiol. Rev. 70:115–164.PubMedGoogle Scholar
  137. Resh, M. D., and Ling, H. P., 1990, Identification of a 32K plasma membrane protein that binds to the myristylated amino terminal sequence of p60v-src, Nature 346:84–86.PubMedGoogle Scholar
  138. Rhee, S. G., and Choi, K. D., 1992, Regulation of inositol phospholipid-specific phospholipase C isozymes, J. Biol. Chem. 267:12393–12396.PubMedGoogle Scholar
  139. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J., 1994, Phosphotidylinositol-3-OH kinase as a direct target of Ras, Nature 370:527–532.PubMedGoogle Scholar
  140. Sanders, D. A., Gillece-Castro, B. L., Stock, A. M., Burlingame, A. L., and Koshland, D. E., Jr., 1989, Identification of the site of phosphorylation of the Chemotaxis response regulator protein, J. Biol. Chem. 264:21770–21778.PubMedGoogle Scholar
  141. Sanders, D. A., Gillece-Castro, B. L., Burlingame, A. L., and Koshland, D. E., Jr., 1992, Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription, J. Bacteriol. 174:5117–5122.PubMedGoogle Scholar
  142. Satoh, T., Nakafuku, M., and Kaziro, Y., 1992, Function of Ras as a molecular switch in signal transduction, J. Biol. Chem. 267:24149–24152.PubMedGoogle Scholar
  143. Scheidtmann, K. H., Mumby, M. C., Rundell, K., and Walter, G., 1991, Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: Inhibition by small-t antigen, Mol. Cell. Biol. 11:1996–2003.PubMedGoogle Scholar
  144. Schindler, C., Shuai, K., Prezioso, V. R., and Darnell, J. E., 1992, Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor, Science 257:809–813.PubMedGoogle Scholar
  145. Schlessinger, J., and Ullrich, A., 1992, Growth factor signaling by receptor tyrosine kinases, Neuron 9:383–391.PubMedGoogle Scholar
  146. Schmitz, J. L., Henkle, T., and Baeuerle, P. A., 1991, Proteins controlling the nuclear uptake of NF-κB, Rel and Dorsal, Trends Cell Biol. 1:130–137.PubMedGoogle Scholar
  147. Shoelson, S. E., Chatterjee, S., Chaudhuri, M., and White, M. F., 1992, YMXM motifs of IRS-1 define substrate specificity of the insulin receptor kinase, Proc. Natl. Acad. Sci. U.S.A. 89:2027–2031.PubMedGoogle Scholar
  148. Shultz, L. D., Schweitzer, P. A., Rajan, T. V., Yi, T., Itile, J. N., Matthews, R. J., Thomas, M. L., and Beier, D. R., 1993, Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene, Cell 73:1445–1454.PubMedGoogle Scholar
  149. Smeal, T., Binetruy, B., Mercola, D. A., Birrer, M., and Karin, M., 1991, Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73, Nature 354:494–496.PubMedGoogle Scholar
  150. Smrcka, A. V., Hepler, J. R., Brown, K. O., and Sternweis, P. C., 1991, Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq, Science 251:804–807.PubMedGoogle Scholar
  151. Snyder, S. H., 1992, Nitric oxide: First in a new class of neurotransmitters?, Science 257:494–496.PubMedGoogle Scholar
  152. Soderling, T. R., 1990, Protein kinases: Regulation by autoinhibitory domains, J. Biol. Chem. 265:1823–1826.PubMedGoogle Scholar
  153. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., and Mumby, M., 1993, The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation, Cell 75:887–897.PubMedGoogle Scholar
  154. Sprenger, F., and Nusslein-Volhard, C., 1992, Torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of the Drosophila egg, Cell 71:987–1001.PubMedGoogle Scholar
  155. Steele, F. R., Washburn, T., Rieger, R., and O’Tousa, J. E., 1992, Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase, Cell 69:669–676.PubMedGoogle Scholar
  156. Stock, A. M., Mottonen, J. M., Stock, J. B., and Schutt, C. E., 1989, Three-dimensional structure of CheY, the response regulator of bacterial Chemotaxis, Nature 337:745–749.PubMedGoogle Scholar
  157. Stock, J. B., Stock, A. M., and Mottonen, J. M., 1990, Signal transduction in bacteria, Nature 334:395–400.Google Scholar
  158. Su, W., Porter, S., Kustu, S., and Echols, H., 1990, DNA-looping and enhancer activity: Association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter, Proc. Natl. Acad. Sci. U.S.A. 87:5504–5508.PubMedGoogle Scholar
  159. Sun, H., Charles, C. H., Lau, L. F., and Tonks, N. K., 1993, MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo, Cell 75:487–493.PubMedGoogle Scholar
  160. Sutton, A., Immanuel, D., and Arndt, K. T., 1991, The SIT4 protein phosphatase functions in late G1 for progression into S phase, Mol. Cell Biol. 11:2133–2148.PubMedGoogle Scholar
  161. Taha, M. K., Dupuy, B., Saurin, W., So, M., and Marchai, C., 1991, Control of pilus expression in Neisseria gonorrhoeae as original system in the family of two-component regulators, Mol. Microbiol. 5:137–148.PubMedGoogle Scholar
  162. Tan, Y. H., 1993, Yin and yang of phosphorylation in cytokine signaling, Science 262:376–377.PubMedGoogle Scholar
  163. Taylor, S. S., Buechler, J. A., and Yonemoto, W., 1990, cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes, Annu. Rev. Biochem. 59:971–1005.PubMedGoogle Scholar
  164. Tonks, N. K., Charbonneau, H., Diltz, C. D., Fischer, E. H., and Walsh, K. A., 1988, Demonstration that the leucocyte common antigen CD45 is a protein tyrosine phosphatase, Biochem. 27:8695–8701.Google Scholar
  165. Treisman, R., 1992, The serum response element, Trends Biochem. Sci. 17:423–426.PubMedGoogle Scholar
  166. Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M., 1994, Genetic dissection of consolidated memory in Drosophila melanogaster, Cell 79:35–48.PubMedGoogle Scholar
  167. Uemura, T., Shiomi, K., Togashi, S., and Takeichi, M., 1993, Mutation of twins encoding a regulator of protein phosphatase 2A leads to pattern duplication in Drosophila imaginai discs, Genes Dev. 7:429–440.PubMedGoogle Scholar
  168. Ullrich, A., and Schlessinger, J., 1990, Signal transduction by receptors with tyrosine kinase activity, Cell 61:203–212.PubMedGoogle Scholar
  169. Van Etten, R. A., Jackson, P., and Baltimore, D., 1989, The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization, Cell 58:669–678.PubMedGoogle Scholar
  170. Velazquez, L., Fellous, M., Stark, G. R., and Pellagrini, S., 1992, A protein tyrosine kinase in the interferon α/β signaling pathway, Cell 70:313–322.PubMedGoogle Scholar
  171. Walton, K. M., and Dixon, J. E., 1993, Protein tyrosine phosphatases, Annu. Rev. Biochem. 62:101–120.PubMedGoogle Scholar
  172. Welch, P. J., and Wang, J. Y., 1993, A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle, Cell 75:779–790.PubMedGoogle Scholar
  173. Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O., and Ihle, J. N., 1993, JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin, Cell 74:227–236PubMedGoogle Scholar
  174. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massague, J., 1994, Mechanism of activation of the TGF-β receptor, Nature 370:341–347.PubMedGoogle Scholar
  175. Yeung, Y. G., Berg, K. L., Pixley, F. J., Angeletti, R. H., and Stanley, E. R., 1992, Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1, J. Biol. Chem. 267:23447–23450.PubMedGoogle Scholar
  176. Zanke, B., Suzuki, H., Kishihara, K., Mizzen, L., Minden, M., Pawson, A., and Mak, T. W., 1992, Cloning and expression of an inducible lymphoid-specific protein tyrosine phosphatase (HePTPase), Eur. J. Immunol. 22:235–239.PubMedGoogle Scholar
  177. Zheng, C. F., and Guan, K. L., 1994, Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues, EMBO J. 13:1123–1131.PubMedGoogle Scholar
  178. Zhuo, S., Clemens, J. C., Hakes, D. J., Barford, D., and Dixon, J. E., 1993, Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase, J. Biol. Chem. 268:17754–17761.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Sailen Barik
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, College of MedicineUniversity of South AlabamaMobileUSA

Personalised recommendations