Skip to main content

Control of the Ca2+ Release Induced by myo-Inositol Trisphosphate and the Implication in Signal Transduction

  • Chapter
myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction

Part of the book series: Subcellular Biochemistry ((SCBI,volume 26))

Abstract

Inositol-1,4,5-trisphosphate (InsP3) is a diffusible messenger formed within the cell in response to external stimuli. It mobilizes Ca2+ from those nonmitochondrial Ca2+ pools that express the InsP3 receptor (InsP3R), a specific Ca2+-release channel (Berridge and Irvine, 1989; Berridge, 1993). The nonmitochondrial pools were originally classified as InsP3-sensitive and InsP3insensitive. Recent evidence suggests that the InsP3-sensitive Ca2+ pool is much larger than hitherto expected (Bird et al., 1992) and that InsP3-insensitive Ca2+ pools can artifactually be formed during the permeabilization procedure (Hajnóczky et al., 1994). Under conditions of very mild permeabilization, 95% of the nonmitochondrial Ca2+ pools can be InsP3-sensitive, e.g., in A7r5 smooth muscle cells (Missiaen et al., 1992b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

InsP3 :

inositol-1,4,5-trisphosphate

InsP3R:

InsP3 receptor

PK A:

cyclic- AMP-dependent protein kinase

PKG:

cyclic-GMP-dependent protein kinase

[Ca2+]:

Ca2+ concentration

[Ca2+]i :

cytosolic Ca2+ concentration

PCR:

polymerase chain reaction

References

  • Benevolensky, D., Moraru, I. I., and Watras, J., 1994, Micromolar calcium decreases affinity of inositol trisphosphate receptor in vascular smooth muscle, Biochem J. 299:631–636.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1991, Caffeine inhibits inositol-trisphosphate-induced membrane potential oscillations in Xenopus oocytes, Proc. R. Soc. Lond. [Biol.] 244:57–62.

    CAS  Google Scholar 

  • Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.

    PubMed  CAS  Google Scholar 

  • Bezprozvanny, I., and Ehrlich, B. E., 1993, ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites, Neuron 10:1175–1184.

    PubMed  CAS  Google Scholar 

  • Bezprozvanny, I., Watras, J., and Ehrlich, B. E., 1991, Bell-shaped calcium-response curves of InsP3-and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature 351:751–754.

    PubMed  CAS  Google Scholar 

  • Bezprozvanny, I., Bezprozvannaya, S., and Ehrlich, B. E., 1994, Caffeine-induced inhibition of inositol(l,4,5)-trisphosphate-gated calcium channels from cerebellum, Mol. Biol. Cell 5:97–103.

    PubMed  CAS  Google Scholar 

  • Bird, G. St. J., Obie, J. F., and Putney, J. W., Jr., 1992, Functional homogeneity of the nonmitochondrial Ca2+ pool in intact mouse lacrimal cells, J. Biol. Chem. 267:18382–18386.

    PubMed  CAS  Google Scholar 

  • Bird, G. St. J., Rossier, M. F., Obie, J. F., and Putney, J. W., Jr., 1993a, Sinusoidal oscillations in intracellular calcium requiring negative feedback by protein kinase C., J. Biol. Chem. 268:8425–8428.

    PubMed  CAS  Google Scholar 

  • Bird, G. St. J., Burgess, G. M., and Putney, J. W., Jr., 1993b, Sulfhydryl reagents and cAMP-dependent kinase increase the sensitivity of the inositol 1,4,5-trisphosphate receptor in hepato-cytes, J. Biol. Chem. 268:17917–17923.

    PubMed  CAS  Google Scholar 

  • Blondel, O., Takeda, J., Janssen, H., Seino, S., and Bell, G. I., 1993, Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues, J. Biol. Chem. 268:11356–11363.

    PubMed  CAS  Google Scholar 

  • Blondel, O., Moody, M., Depaoli, M., Sharp, A. H., Ross, C. A., Swift, H., and Bell, E. I., 1994, Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells, Proc. Natl. Acad. Sci. U.S.A. 91:7777–7781.

    PubMed  CAS  Google Scholar 

  • Boitano, S., Dirksen, E. R., and Sanderson, M. J., 1992, Intercellular propagation of calcium waves mediated by inositol trisphosphate, Science 258:292–295.

    PubMed  CAS  Google Scholar 

  • Bond, J. M., and Taylor, C. W., 1991, Solubilization of rat liver inositol 1,4,5-trisphosphate receptor, Cell. Signal. 3:607–612.

    PubMed  CAS  Google Scholar 

  • Bootman, M. D., Berridge, M. J., and Taylor, C. W., 1992a, All-or-none Ca2+ mobilization from the intracellular stores of single histamine-stimulated HeLa cells, J. Physiol. 450:163–178.

    PubMed  CAS  Google Scholar 

  • Bootman, M. D., Taylor, C. W., and Berridge, M. J., 1992b, The thiol reagent, thimerosal, evokes Ca2+ spikes in Hela cells by sensitizing the inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 267:25113–25119.

    PubMed  CAS  Google Scholar 

  • Bootman, M. D., Missiaen L., Parys, J. B., De Smedt, H., and Casteels, R., 1995, Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+, Biochem J. 306:445–451.

    PubMed  CAS  Google Scholar 

  • Bourguignon, L. Y. W., Iida, N., and Jin, H., 1993a, The involvement of the cytoskeleton in regulating IP3 receptor-mediated internal Ca2+ release in human blood platelets, Cell Biol. 17:751–758.

    CAS  Google Scholar 

  • Bourguignon, L. Y. W., Jin, H., Iida, N., Brandt, N. R., and Zhang, S. H., 1993b, The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells, J. Biol. Chem. 268:7290–7297.

    PubMed  CAS  Google Scholar 

  • Brass, L. F., and Joseph, S. K., 1985, A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets, J. Biol. Chem. 260:15172–15179.

    PubMed  CAS  Google Scholar 

  • Brown, G. R., Sayers, L. G., Kirk, C. J., Michell, R. H., and Michelangeli, F., 1992, The opening of the inositol 1,4,5-trisphosphate-sensitive channel in rat cerebellum is inhibited by caffeine, Biochem. J. 282:309–312.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., Bird, G. S. J., Obie, J. F., and Putney, J. W., Jr., 1991, The mechanism for synergism between phospholipase C-and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates, J. Biol. Chem. 266:4772–4781.

    PubMed  CAS  Google Scholar 

  • Byron, K. L., and Taylor, C. W., 1993, Spontaneous Ca2+ spiking in avascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores, J. Biol. Chem. 268:6945–6952.

    PubMed  CAS  Google Scholar 

  • Callamaras, N., and Parker, I., 1994, Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: Localization and modulation by Ca2+, Cell Calcium 15:66–78.

    PubMed  CAS  Google Scholar 

  • Carroll, J., and Swann, K., 1992, Spontaneous cytosolic calcium oscillations driven by inositol trisphosphate occur during in vitro maturation of mouse oocytes, J. Biol. Chem. 267:11196–11201.

    PubMed  CAS  Google Scholar 

  • Chadwick, C. C., Saito, A., and Fleischer, S., 1990, Isolation and characterization of the inositol trisphosphate receptor from smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 87:2132–2136.

    PubMed  CAS  Google Scholar 

  • Champeil, P., Combettes, L., Berthon, B., Doucet, E., Orlowski, S., and Claret, M., 1989, Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepato-cytes, J. Biol. Chem. 264:17665–17673.

    PubMed  CAS  Google Scholar 

  • Cheek, T. R., McGuinness, O. M., Vincent, C., Moreton, R. B., Berridge, M. J., and Johnson, M. H., 1993, Fertilisation and thimerosal stimulate similar calcium spiking patterns in mouse oocytes but by separate mechanisms, Development 119:179–189.

    PubMed  CAS  Google Scholar 

  • Combettes, L., Claret, M., and Champeil, P., 1992, Do submaximal InsP3 concentrations only induce the partial discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca2+ concentration? FEBS Lett. 301:287–290.

    PubMed  CAS  Google Scholar 

  • Combettes, L., Claret, M., and Champeil, P., 1993, Calcium control on InsP3-induced discharge of calcium from permeabilised hepatocyte pools, Cell Calcium 14:279–292.

    PubMed  CAS  Google Scholar 

  • Combettes, L., Hannaert-Merah, Z., Coquil, J.-F., Rousseau, C., Claret, M., Swillens, S., and Champeil, P., 1994a, Rapid filtration studies of the effect of cytosolic Ca2+ on InsP3-induced 45Ca2+ release from cerebellar microsomes, J. Biol. Chem. 269:17561–17571.

    PubMed  CAS  Google Scholar 

  • Combettes, L. Berthon, B., and Claret, M., 1994b, Caffeine inhibits cytosolic calcium oscillations induced by noradrenaline and vasopressin in rat hepatocytes, Biochem. J. 301:737–744.

    PubMed  CAS  Google Scholar 

  • Danoff, S. K., Ferris, C. D., Donath, C., Fischer, G., Munemitsu, S., Ullrich, A., Snyder, S. H., and Ross, C. A., 1991, Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuro-nal forms derived by alternative splicing differ in phosphorylation, Proc. Natl. Acad. Sci. U.S.A. 88:2951–2955.

    PubMed  CAS  Google Scholar 

  • De Lisle, S., Radenberg, T., Wintermantel, M. R., Tietz, C., Parys, J. B., Pittet, D., Welsh, M. J., and Mayr, G. W., 1994, Second messenger specificity of the inositol trisphosphate receptor: Reappraisal based on novel inositol phosphates, Am. J. Physiol. 266:C429–C436.

    Google Scholar 

  • De Smedt, H., Missiaen, L., Parys, J. B., Bootman, M. D., Mertens, L., Van Den Bosch, L., and Casteels, R., 1994, Determination of the relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction, J. Biol. Chem. 269:21691–21698.

    PubMed  Google Scholar 

  • Diarra, A., Wang, R., Garneau, L., Gallo-Payet, N., and Sauvé, R., 1994, Histamine-evoked Ca2+ oscillations in HeLa cells are sensitive to methylxanthines but insensitive to ryanodine, Pflugers Arch. 426:129–138.

    PubMed  CAS  Google Scholar 

  • Ehrlich, B. E., and Watras, J., 1988, Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum, Nature 336:583–586.

    PubMed  CAS  Google Scholar 

  • Enyedi, P., Szabadkai, G., Horváth, A., Szilágyi, L., Gráf, L., and Spät, A., 1994, Inositol 1,4,5-trisphosphate receptor subtypes in adrenal glomerulosa cells, Endocrinology 134:2354–2359.

    PubMed  CAS  Google Scholar 

  • Feng, L., and Kraus-Friedman, N., 1993, Association of the hepatic IP3 receptor with the plasma membrane: Relevance to mode of action, Am. J. Physiol. 265:C1588–C1596.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., and Snyder, S. H., 1992, Inositol 1,4,5-trisphosphate-activated calcium channels, Annu. Rev. Physiol. 54:469–488.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., Huganir, R. L., Supattapone, S., and Snyder, S. H., 1989, Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles, Nature 342:87–89.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., Huganir, R. L., and Snyder, S. H., 1990, Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides, Proc. Natl. Acad. Sci. U.S.A. 87:2147–2151.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., Huganir, R. L., Bredt, D. S., Cameron, A. M., and Snyder, S. H., 1991, Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles, Proc. Natl. Acad. Sci. U.S.A. 88:2232–2235.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H., 1992a, Auto-phosphorylation of inositol 1,4,5-trisphosphate receptors, J. Biol. Chem. 267:7036–7041.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., Cameron, A. M., Huganir, R. L., and Snyder, S. H., 1992b, Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors, Nature 356:350–352.

    PubMed  CAS  Google Scholar 

  • Finch, E. A., and Goldin, S. M., 1994, Response to “Calcium and inositol 1,4,5-trisphosphate-induced Ca2+ release,” Science 265:813–815.

    CAS  Google Scholar 

  • Finch, E. A., Turner, T. J., and Goldin, S. M., 1991, Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release, Science 252:443–446.

    PubMed  CAS  Google Scholar 

  • Fujimoto, T., Nakade, S., Miyawaki, A., Mikoshiba, K., and Ogawa, K., 1992, Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae, J. Cell Biol. 119:1507–1513.

    PubMed  Google Scholar 

  • Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature 342:32–38.

    PubMed  CAS  Google Scholar 

  • Furuichi, T., Shiota, C., and Mikoshiba, K., 1990, Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissues, FEBS Lett. 267:85–88.

    PubMed  CAS  Google Scholar 

  • Fumichi, T., Simon-Chazottes, D., Fujino, I., Yamada, N., Hasegawa, M., Miyawaki, A., Yoshikawa, S., Guénet, J.-L., and Mikoshiba, K., 1993, Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3rl) in the mouse central nervous system, Receptors Channels 1:11–24.

    Google Scholar 

  • Galione, A., McDougall, A., Busa, W. B., Willmott, N., Gillot, I., and Whitaker, M., 1993, Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs, Science 261:348–352.

    PubMed  CAS  Google Scholar 

  • Gericke, M., Droogmans, G., and Nilius, B., 1993, Thimerosal induced changes of intracellular calcium in human endothelial cells, Cell Calcium 14:201–207.

    PubMed  CAS  Google Scholar 

  • Ghosh, T. K., Eis, P. S., Mullaney, J. M., Ebert, C. L., and Gill, D. L., 1988, Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin, J. Biol. Chem. 263:11075–11079.

    PubMed  CAS  Google Scholar 

  • Gill, D. L., 1989, Receptor kinships revealed, Nature 342:16–18.

    PubMed  CAS  Google Scholar 

  • Glennon, M. C., Bird, G. St. J., Kwan, C.-Y., and Putney, J. W., Jr., 1992, Actions of vasopressin and the Ca2+-ATPase inhibitor, thapsigargin, on Ca2+ signaling in hepatocytes, J. Biol. Chem. 267:8230–8233.

    PubMed  CAS  Google Scholar 

  • Gorza, L., Schiaffino, S., and Volpe, P., 1993, Inositol 1,4-5-trisphosphate receptor in heart: Evidence for its concentration in Purkinje myocytes of the conduction system, J. Cell Biol. 121:345–353.

    PubMed  CAS  Google Scholar 

  • Guillemette, G., and Segui, J. A., 1988, Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-trisphosphate in the bovine adrenal cortex, Mol. Endocrinol. 2:1249–1255.

    PubMed  CAS  Google Scholar 

  • Guillemette, G., Balla, T., Baukal, A. J., and Catt, K. J., 1987, Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the anterior pituitary gland, Proc. Natl. Acad. Sci. U.S.A. 84:8195–8199.

    PubMed  CAS  Google Scholar 

  • Guillemette, G., Favreau, I., Boulay, G., and Potier, M., 1990, Solubilization and partial characterization of inositol 1,4,5-trisphosphate receptor of bovine adrenal cortex reveal similarities with the receptor of rat cerebellum, Mol. Pharmacol. 38:841–847.

    PubMed  CAS  Google Scholar 

  • Györke, S., and Fill, M., 1993, Ryanodine receptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart, Science 260:807–809.

    PubMed  Google Scholar 

  • Hajnóczky, G., and Thomas, A. P., 1994, The inositol trisphosphate calcium channel is inactivated by inositol trisphosphate, Nature 370:474–477.

    PubMed  Google Scholar 

  • Hajnóczky, G., Gao, E., Nomura, T., Hoek, J. B., and Thomas, A. P., 1993, Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes, Biochem. J. 293: 413–422.

    PubMed  Google Scholar 

  • Hajnóczky, G., Lin, C., and Thomas, A. P., 1994, Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton, J. Biol. Chem. 269:10280–10287.

    PubMed  Google Scholar 

  • Harootunian, A. T., Kao, J. P. Y., Paranjape, S., and Tsien, R. Y., 1991, Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3, Science 251:75–78.

    PubMed  CAS  Google Scholar 

  • Hilly, M., Piétri-Rouxel, F., Coquil, J. F., Guy, M., and Mauger, J. P., 1993, Thiol reagents increase the affinity of the inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 268:16488–16494.

    PubMed  CAS  Google Scholar 

  • Hirata, M., Suematsu, E., Hashimoto, T., Hamachi, T., and Koga, T., 1984, Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate, Biochem. J. 223:229–236.

    PubMed  CAS  Google Scholar 

  • Hirata, M., Narumoto, N., Watanabe, Y., Kanematsu, T., Koga, T., and Ozaki, S., 1994, DL-myo-inositol 1,2,4,5-tetrakisphosphate, a potent analog of D-myo-inositol 1,4,5-trisphosphate, Mol. Pharmacol. 45:271–276.

    PubMed  CAS  Google Scholar 

  • Hirose, K., Iino, M., and Endo, M., 1993, Caffeine inhibits Ca2+-mediated potentiation of inositol 1,4,5-trisphosphate-induced Ca2+-release in permeabilized vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 194:726–732.

    PubMed  CAS  Google Scholar 

  • Iino, M., 1990, Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci, J. Gen. Physiol. 95:1103–1122.

    PubMed  CAS  Google Scholar 

  • Iino, M., 1991, Effect of adenine nucleotides on inositol 1,4,5-trisphosphate-induced calcium release in vascular smooth muscle cells, J. Gen. Physiol. 98:681–698.

    PubMed  CAS  Google Scholar 

  • Iino, M., and Endo, M., 1992, Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release, Nature 360:76–78.

    PubMed  CAS  Google Scholar 

  • Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P., 1987, Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J. Biol. Chem. 262:16636–16643.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., 1990, “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism, FEBS Lett. 263:5–9

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., 1991, Inositol tetrakisphosphate as a second messenger: Confusions, contradictions, and a potential resolution, BioEssays 13:419–427.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Brown, K. D., and Berridge, M. J., 1984, Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss mouse 3T3 cells, Biochem. J. 222:269–272.

    PubMed  CAS  Google Scholar 

  • Jacob, R., Merritt, J. E., Hallam, T. J., and Rink, T. J., 1988, Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells, Nature 335:40–45.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., 1994, Biosynthesis of the inositol trisphosphate receptor in WB rat liver epithelial cells, J. Biol. Chem. 269:5673–5679.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Ryan, S. V., 1993, Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes, J. Biol. Chem. 268:23059–23065.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Samanta, S., 1993, Detergent solubility of the inositol trisphosphate receptor in rat brain membranes. Evidence for association of the receptor with ankyrin, J. Biol. Chem. 268:6477–6486.

    PubMed  CAS  Google Scholar 

  • Kasai, H., Li, Y. X., and Miyashita, Y., 1993, Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas, Cell 74:669–677.

    PubMed  CAS  Google Scholar 

  • Khan, A. A., Steiner, J. P., and Snyder, S. H., 1992a, Plasma membrane inositol-trisphosphate receptor of lymphocytes: Selective enrichment in sialic acid and unique binding specificity, Proc. Natl. Acad. Sci. U.S.A. 89:2849–2853.

    PubMed  CAS  Google Scholar 

  • Khan, A. A., Steiner, J. P., Klein, M. G., Schneider, M. F., and Snyder, S. H., 1992b, IP3 receptor: Localization to plasma membrane of T cells and cocapping with the T cell receptor, Science 257:815–818.

    PubMed  CAS  Google Scholar 

  • Kline, J. T., and Kline, D., 1994, Regulation of intracellular calcium in the mouse egg: Evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release, Biol. Reprod. 50:193–203.

    PubMed  CAS  Google Scholar 

  • Koga, T., Yoshida, Y., Cai, J.-Q., Islam, M. O., and Imai, S., 1994, Purification and characterization of 240-kDA cGMP-dependent protein kinase substrate of vascular smooth muscle. Close resemblance to inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 269:11640–11647.

    PubMed  CAS  Google Scholar 

  • Komalavilas, P., and Lincoln, T. M., 1994, Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase, J. Biol. Chem. 269:8701–8707.

    PubMed  CAS  Google Scholar 

  • Kume, S., Muto, A., Aruga, J., Nakagawa, T., Michikawa, T., Furuichi, T., Nakade, S., Okano, H., and Mikoshiba, K., 1993, The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs, Cell 73:555–570.

    PubMed  CAS  Google Scholar 

  • Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y., and Meissner, G., 1988, Purification and reconstitution of the calcium release channel from skeletal muscle, Nature 331:315–319.

    PubMed  CAS  Google Scholar 

  • Lechleiter, J., Girard, S., Clapham, D., and Peralta, E., 1991, Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors, Nature 350:505–508.

    PubMed  CAS  Google Scholar 

  • Lee, H. C., Aarhus, R., and Walseth, T. F., 1993, Calcium mobilization by dual receptors during fertilization of sea urchin eggs, Science 261:352–355.

    PubMed  CAS  Google Scholar 

  • Lièvremont, J.-P., Hill, A.-M., Hilly, M., and Mauger, J.-P., 1994, The inositol 1,4,5-trisphosphate receptor is localized on specialized sub-regions of the endoplasmic reticulum in rat liver, Biochem. J. 300:419–427.

    PubMed  Google Scholar 

  • Lipscombe, D., Madison, D. V., Poenie, M., Reuter, H., Tsien, R. W., and Tsien, R. Y., 1988, Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons, Neuron 1:355–365.

    PubMed  CAS  Google Scholar 

  • Loomis-Husselbee, J. W., and Dawson, A. P., 1993, A steady-state mechanism can account for the properties of inositol 2,4,5-trisphosphate-stimulated Ca2+ release from permeabilized L1210 cells, Biochem. J. 289:861–866.

    PubMed  CAS  Google Scholar 

  • Luttrell, B. M., 1993, The biological relevance of the binding of calcium ions by inositol phosphates, J. Biol. Chem. 268:1521–1524.

    PubMed  CAS  Google Scholar 

  • Lynn, S., Morgan, J. M., Gillespie, J. I., and Greenwell, J. R., 1993. A novel ryanodine sensitive calcium release mechanism in cultured human myometrial smooth-muscle cells, FEBS Lett. 330:227–230.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Niinobe, M., Nakahira, K., and Mikoshiba, K., 1988, Purification and characterization of P400 protein, a glycoprotein characteristic of Purkinje cell, from mouse cerebellum, J. Neurochem. 51:1724–1730.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Niinobe, M., Inoue, Y., and Mikoshiba, K., 1989, Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in mouse cerebellum, Dev. Biol. 133:67–76.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Niinobe, M., and Mikoshiba, K., 1990, A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex, EMBO J. 9:61–67.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Kawasaki, T., Nakade, S., Yokota, N., Taguchi, T., Kasai, M., and Mikoshiba, K., 1991, Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum, J. Biol. Chem. 266:1109–1116.

    PubMed  CAS  Google Scholar 

  • Magnussen, A., Haug, L. S., Walaas, S. I., and Østvold, A. C., 1993, Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca2+-channel, FEBS Lett. 323:229–232.

    Google Scholar 

  • Maranto, A. R., 1994, Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium, J. Biol. Chem. 269:1222–1230.

    PubMed  CAS  Google Scholar 

  • Marks, A. R., Tempst, P., Chadwick, C. C., Riviere, L., Fleischer, S., and Nadal-Ginard, B., 1990, Smooth muscle and brain inositol 1,4,5-trisphosphate receptors are structurally and functionally similar, J. Biol. Chem. 265:20719–20722.

    PubMed  CAS  Google Scholar 

  • Marshall, I. C. B., and Taylor, C. W., 1993a, Biphasic effects of cytosolic Ca2+ on InsP3-stimulated Ca2+ mobilization in hepatocytes, J. Biol. Chem. 268:13214–13220.

    PubMed  CAS  Google Scholar 

  • Marshall, I. C. B., and Taylor, C. W., 1993b, Regulation of inositol 1,4,5-trisphosphate receptors, J. Exp. Biol. 184:161–182.

    PubMed  CAS  Google Scholar 

  • Marshall, I. C. B., and Taylor, C. W., 1994, Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states, Biochem. J. 301:591–598.

    PubMed  CAS  Google Scholar 

  • Matter, N., Ritz, M. F., Freyermuth, S., Rogue, P., and Malviya, A. N., 1993, Stimulation of nuclear protein kinase C leads to phosphorylation of nuclear inositol 1,4,5-trisphosphate receptor and accelerated calcium release by inositol 1,4,5-trisphosphate from isolated rat liver nuclei, J. Biol. Chem. 268:732–736.

    PubMed  CAS  Google Scholar 

  • Mauger, J.-P., Claret, M., Piétri, F., and Hilly, M., 1989, Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver, J. Biol. Chem. 264:8821–8826.

    PubMed  CAS  Google Scholar 

  • Mauger, J.-P., Lièvremont, J.-P., Piétri-Rouxel, F., Hilly, M., and Coquil, J.-F., 1994, The inositol 1,4,5-trisphosphate receptor: Kinetic properties and regulation, Mol. Cell. Endocrinol. 98:133–139.

    PubMed  CAS  Google Scholar 

  • Mayrleitner, M., Chadwick, C. C., Timmerman, A. P., Fleischer, S., and Schindler, H., 1991, Purified IP3 receptor from smooth muscle forms an IP3 gated and heparin sensitive Ca2+ channel in planar bilayers, Cell Calcium 12:505–514.

    PubMed  CAS  Google Scholar 

  • Menniti, F. S., Bird, G. St. J., Takemura, H., Thastrup, O., Potter, B. V. L., and Putney, J. W., Jr., 1991, Mobilization of calcium by inositol trisphosphates from permeabilized rat parotid acinar cells. Evidence for translocation of calcium from uptake to release sites within the inositol 1,4,5-trisphosphate-and thapsigargin-sensitive calcium pool, J. Biol. Chem. 266:13646–13653.

    PubMed  CAS  Google Scholar 

  • Meyer, T., and Stryer, L., 1990, Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate, Proc. Natl. Acad. Sci. U.S.A. 87:3841–3845.

    PubMed  CAS  Google Scholar 

  • Meyer, T., Wensel, T., and Stryer, L., 1990, Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate, Biochemistry 29:32–37.

    PubMed  CAS  Google Scholar 

  • Michikawa, T., Hamanaka, H., Otsu, H., Yamamoto, A., Miyawaki, A., Furuichi, T., Tashiro, Y., and Mikoshiba, K., 1994, Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 269:9184–9189.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., and Südhof, T. C., 1990, The ligand binding site and transduction mechanism in the inositol-1,4,5-trisphosphate receptor, EMBO J. 9:3893–3898.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., Südhof, T. C., Takei, K., and De Camilli, P., 1989, Putative receptor for inositol 1,4,5-trisphosphate similar to the ryanodine receptor, Nature 342:192–195.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., Newton, C. L., Archer, B. T. III, and Südhof, T. C., 1990, Structure and expression of the rat inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 265:12679–12684.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., Johnston, P. A., and Südhof, T. C., 1992, Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor, J. Biol. Chem. 267:7450–7455.

    PubMed  CAS  Google Scholar 

  • Mikoshiba, K., 1993, Inositol 1,4,5-trisphosphate receptor, Trends Pharmacol. Sci. 14:86–89.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., Taylor, C. W., and Berridge, M. J., 1991, Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores, Nature 352:241–244.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., Taylor, C. W., and Berridge, M. J., 1992a, Luminal Ca2+ promoting spontaneous Ca2+ release from inositol trisphosphate-sensitive stores in rat hepatocytes, J. Physiol. 455:623–640.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., De Smedt, H., Droogmans, G., and Casteels, R., 1992b, Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in per-meabilized cells, Nature 357:599–602.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., De Smedt, H., Droogmans, G., and Casteels, R., 1992c, Luminal Ca2+ controls the activation of the InsP3 receptor by cytosolic Ca2+, J. Biol. Chem. 267:22961–22966.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., De Smedt, H., Parys, J. B., and Casteels, R., 1994a, Co-activation of inositol trisphosphate-induced Ca2+ release by cytosolic Ca2+ is loading-dependent, J. Biol. Chem. 269:7238–7242.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., Parys, J. B., De Smedt, H., Himpens, B., and Casteels, R., 1994b, Inhibition of inositol trisphosphate-induced calcium release by caffeine is prevented by ATP, Biochem. J. 300:81–84.

    PubMed  CAS  Google Scholar 

  • Missiaen, L., Parys, J. B., De Smedt, H., Oike, M., and Casteels, R., 1994c, Partial calcium release in response to submaximal inositol 1,4,5-trisphosphate receptor activation, Mol. Cell. Endocrinol. 98:147–156.

    PubMed  CAS  Google Scholar 

  • Miyawaki, A., Furuichi, T., Maeda, N., and Mikoshiba, K., 1990, Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron 5:11–18.

    PubMed  CAS  Google Scholar 

  • Miyawaki, A., Furuichi, T., Ryou, Y., Yoshikawa, S., Nakagawa, T., Saitoh, T., and Mikoshiba, K., 1991, Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor, Proc. Natl. Acad. Sci. U.S.A. 88:4911–4915.

    PubMed  CAS  Google Scholar 

  • Miyazaki, S.-I., Shirakawa, H., Nakada, K., Honda, Y., Yuzaki, M., Nakade, S., and Mikoshiba, K., 1992, Antibody to the inositol trisphosphate receptor blocks thimerosal-enhanced Ca2+-induced Ca2+ release and Ca2+ oscillations in hamster eggs, FEBS Lett. 309:180–184.

    PubMed  CAS  Google Scholar 

  • Mohr, F. C., Hershey, P. E. C., Zimányi, I., and Pessah, I. N., 1993, Regulation of inositol 1,4,5-trisphosphate receptors in rat basophilic leukemia cells. I. Multiple conformational states of the receptor in a microsomal preparation, Biochim. Biophys. Acta 1147:105–114.

    PubMed  CAS  Google Scholar 

  • Moschella, M. C., and Marks, A. R., 1993, Inositol 1,4,5-trisphosphate receptor expression in cardiac myocytes, J. Cell Biol. 120:1137–1146.

    PubMed  CAS  Google Scholar 

  • Mourey, R. J., Verma, A., Supattapone, S., and Snyder, S. H., 1990, Purification and characterization of the inositol 1,4,5-trisphosphate receptor protein from vas deferens, Biochem. J. 272:383–389.

    PubMed  CAS  Google Scholar 

  • Mourey, R. J., Estevez, V. A. Marecek, J. F., Barrow, R. K., Prestwich, G. D., and Snyder, S. H., 1993, Inositol 1,4,5-trisphosphate receptors: Labeling the inositol 1,4,5-trisphosphate binding site with photoaffinity ligands, Biochemistry 32:1719–1726.

    PubMed  CAS  Google Scholar 

  • Muallem, S., Pandol, S. J., and Beeker, T. G., 1989, Hormone-evoked calcium release from intracellular stores is a quantal process, J. Biol. Chem. 264:205–212.

    PubMed  CAS  Google Scholar 

  • Nakade, S., Maeda, N., and Mikoshiba, K., 1991, Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies, Biochem. J. 277:125–131.

    PubMed  CAS  Google Scholar 

  • Nakade, S., Rhee, S. K., Hamanaka, H., and Mikoshiba, K., 1994, Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles, J. Biol. Chem. 269:6735–6742.

    PubMed  CAS  Google Scholar 

  • Nakagawa, T., Okano, H., Furuichi, T., Amga, J., and Mikoshiba, K., 1991a, The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmen-tally specific manner, Proc. Natl. Acad. Sci. U.S.A. 88:6244–6248.

    PubMed  CAS  Google Scholar 

  • Nakagawa, T., Shiota, C., Okano, H., and Mikoshiba, K., 1991b, Differential localization of alternative spliced transcripts encoding inositol 1,4,5-trisphosphate receptors in mouse cerebellum and hippocampus: In situ hybridization study, J. Neurochem. 57:1807–1810.

    PubMed  CAS  Google Scholar 

  • Nathanson, M. H., Fallon, M. B., Padfield, P. J., and Maranto, A. R., 1994, Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells, J. Biol. Chem. 269:4693–4696.

    PubMed  CAS  Google Scholar 

  • Nunn, D. L., and Taylor, C. W., 1990, Liver inositol 1,4,5-trisphosphate-binding sites are the Ca2+-mobilizing receptors, Biochem J. 270:227–232.

    PubMed  CAS  Google Scholar 

  • Nunn, D. L., and Taylor, C. W., 1992, Luminal Ca2+ increases the sensitivity of Ca2+ stores to inositol 1,4,5-trisphosphate, Mol. Pharmacol. 41:115–119.

    PubMed  CAS  Google Scholar 

  • Oldershaw, K. A., and Taylor, C. W., 1993, Luminal Ca2+ increases the affinity of inositol 1,4,5-trisphosphate for its receptor, Biochem. J. 292:631–633.

    PubMed  CAS  Google Scholar 

  • Oldershaw, K. A., Nunn, D. L., and Taylor, C. W., 1991, Quantal Ca2+ mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes, Biochem. J. 278:705–708.

    PubMed  CAS  Google Scholar 

  • Oldershaw, K. A., Richardson, A., and Taylor, C. W., 1992, Prolonged exposure to inositol 1,4,5-trisphosphate does not cause intrinsic desensitization of the intracellular Ca2+-mobilizing receptor, J. Biol. Chem. 267:16312–16316.

    PubMed  CAS  Google Scholar 

  • Ospichuk, Y. V., Wakui, M., Yule, D. I., Gallacher, D. V., and Petersen, O. H., 1990, Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca24: Simultaneous microfluorimetry and Ca2+ dependent Cl- current recording in single pancreatic acinar cells, EMBO J. 9:697–704.

    Google Scholar 

  • Ozaki, S., Watanabe, Y., Ogasawara, T., Hirata, M., and Kanamatsu, M., 1992, Synthesis and biological properties of 2-substituted myo-inositol 1,4,5-trisphosphate analogues directing toward affinity chromatography and photoaffinity labeling, Carbohydr. Res. 234: 189–206.

    PubMed  CAS  Google Scholar 

  • Parker, I., and Ivorra, I., 1990a, Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: A possible mechanism for oscillatory release of Ca2+, Proc. Natl. Acad. Sci. U.S.A. 87:260–264.

    PubMed  CAS  Google Scholar 

  • Parker, I., and Ivorra, I., 1990b, Localized all-or-none calcium liberation by inositol trisphosphate. Science 250:977–979.

    PubMed  CAS  Google Scholar 

  • Parker, I., and Ivorra, I., 1991, Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes, J. Physiol. 433:229–240.

    PubMed  CAS  Google Scholar 

  • Parker, I., and Yao, Y., 1991, Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate, Proc. R. Soc. Lond. [Biol.] 246:269–274.

    CAS  Google Scholar 

  • Parys, J. B., Sernett, S. W., DeLisle, S., Snyder, P. M., Welsh, M. J., and Campbell, K. P., 1992, Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes, J. Biol. Chem. 267:18776–18782.

    PubMed  CAS  Google Scholar 

  • Parys, J. B., Missiaen, L., De Smedt, H., and Casteels, R., 1993a, Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. Implications for the mechanism of quantal Ca2+ release, J. Biol. Chem. 268:25206–25212.

    PubMed  CAS  Google Scholar 

  • Parys, J. B., Missiaen, L., De Smedt, H., Droogmans, G., and Casteels, R., 1993b, Bell-shaped activation of inositol 1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells, Pflugers Arch. 424:516–522.

    PubMed  CAS  Google Scholar 

  • Parys, J. B., McPherson, S. M., Mathews, L., Campbell, K. P., and Longo, F., 1994, Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis, Dev. Biol. 161:466–476.

    PubMed  CAS  Google Scholar 

  • Parys, J. B., De Smedt, H., Missiaen, L., Bootman, M. D., Sienaert, I., and Casteels, R., 1995, Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection, Cell Calcium 17:239–249.

    PubMed  CAS  Google Scholar 

  • Peng, Y.-W., Sharp, A. H., Snyder, S. H., and Yau, K.-W., 1991, Localization of the inositol 1,4,5-trisphosphate receptor in synaptic terminal in the vertebrate retina, Neuron 6:525–531.

    PubMed  CAS  Google Scholar 

  • Petersen, O. H., 1992, Stimulus-secretion coupling: Cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells, J. Physiol. 448:1–51.

    PubMed  CAS  Google Scholar 

  • Piétri, F., Hilly, M., and Mauger, J. P., 1990, Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 265:17478–17485.

    PubMed  Google Scholar 

  • Piétri Rouxel, F., Hilly, M., and Mauger, J. P., 1992 Characterization of a rapidly dissociating inositol 1,4,5-trisphosphate-binding site in liver membranes, J. Biol. Chem. 267:20017–20023.

    Google Scholar 

  • Poitras, M., Bernier, S., Servant, M., Richard, D. E., Boulay, G., and Guillemette, G., 1993, The high affinity state of inositol 1,4,5-trisphosphate receptor is a functional state, J. Biol. Chem. 268:24078–24082.

    PubMed  CAS  Google Scholar 

  • Renard, D. C., Seitz, M. B., and Thomas, A. P., 1992, Oxidized glutathione causes sensitization of calcium release to inositol 1,4,5-trisphosphate in permeabilized hepatocytes, Biochem. J. 284:507–512.

    PubMed  CAS  Google Scholar 

  • Richardson, A., and Taylor, C. W., 1993, Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization, J. Biol. Chem. 268:11528–11533.

    PubMed  CAS  Google Scholar 

  • Rooney, T. A., Renard, D. C., Sass, E. J., and Thomas, A. P., 1991, Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes, J. Biol. Chem. 266:12272–12282.

    PubMed  CAS  Google Scholar 

  • Ross, C. A., Meldolesi, J., Milner, T. A., Satoh, T, Supattapone, S., and Snyder, S. H., 1989. Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons, Nature 339:468–470.

    PubMed  CAS  Google Scholar 

  • Ross, C. A., Danoff, S. K., Schell, M. J., Snyder, S. H., and Ullrich, A., 1992, Three additional inositol 1,4,5-trisphosphate receptors: Molecular cloning and differential localization in brain and peripheral tissues, Proc. Natl. Acad. Sci. U.S.A. 89:4265–4269.

    PubMed  CAS  Google Scholar 

  • Rossier, M. F., Bird, G. St. J., and Putney, J. W., Jr., 1991, Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments, Biochem. J. 274:643–650.

    PubMed  CAS  Google Scholar 

  • Sanchez-Bueno, A., Marrero, I., and Cobbold, P. H., 1994, Caffeine inhibits agonist-induced cytoplasmic Ca2+ oscillations in single rat hepatocytes, Biochem. Biophys. Res. Commun. 198:728–733.

    PubMed  CAS  Google Scholar 

  • Sayers, L. G., Brown, G. R., Michell, R. H., and Michelangeli, F., 1993, The effects of thimerosal on calcium uptake and inositol 1,4,5-triphosphate-induced calcium release in cerebellar microsomes, Biochem. J. 289:883–887.

    PubMed  CAS  Google Scholar 

  • Schell, M. J., Danoff, S. K., and Ross, C. A., 1993, Inositol (l,4,5)-trisphosphate receptor: Characterization of neuron-specific alternative splicing in rat brain and peripheral tissues, Mol. Brain Res. 17:212–216.

    PubMed  CAS  Google Scholar 

  • Sharp, A. H., Snyder, S. H., and Nigam, S. K., 1992, Inositol 1,4,5-trisphosphate receptors. Localization in epithelial tissues, J. Biol. Chem. 267:7444–7449.

    PubMed  CAS  Google Scholar 

  • Sharp, A. H., Dawson, T. M., Ross, C. A., Fotuhi, M., Mourey, R. J., and Snyder, S. H., 1993, Inositol 1,4,5-trisphosphate receptors: Immunohistochemical localization to discrete areas of rat central nervous system, Neuroscience 53:927–942.

    PubMed  CAS  Google Scholar 

  • Short, A. D., Klein, M. G., Schmeider, M. F., and Gill, D. L., 1993, Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles, J. Biol. Chem. 268:25887–25893.

    PubMed  CAS  Google Scholar 

  • Shuttleworth, T. S., 1992, Ca2+ release from inositol trisphosphate-sensitive stores is not modulated by intraluminal [Ca2+], J. Biol. Chem. 267:3573–3576.

    PubMed  CAS  Google Scholar 

  • Sitsapesan, R., and Williams, A. J., 1994, Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+, J. Membr. Biol. 137:215–226.

    PubMed  CAS  Google Scholar 

  • Spät, A., Bradford, P. G., McKinney, J. S., Rubin, R. P., and Putney, J. W., Jr., 1986, A saturable receptor for 32P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils, Nature 319:514–516.

    PubMed  Google Scholar 

  • Spät, A., Eberhardt, I., and Kiesel, L., 1992, Low concentrations of adenine nucleotides enhance the receptor binding of inositol 1,4,5-trisphosphate, Biochem. J. 287:335–336.

    PubMed  Google Scholar 

  • Südhof, T. C., Newton, C. L., Archer, B. T. III, Ushkaryov, Y. A., and Mignery, G. A., 1991, Structure of a novel InsP3 receptor, EMBO J. 10:3199–3206.

    PubMed  Google Scholar 

  • Sugiyama, T., Yamamoto-Hino, M., Miyawaki, A., Furuichi, T., Mikoshiba, K., and Hasegawa, M., 1994, Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: Dynamic aspects of their cell-type specific expression, FEBS Lett. 349:191–196.

    PubMed  CAS  Google Scholar 

  • Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor, J. Biol. Chem. 263:1530–1534.

    PubMed  CAS  Google Scholar 

  • Swann, K., 1991, Thimerosal causes calcium oscillations and sensitizes calcium-induced calcium release in unfertilized hamster eggs, FEBS Lett. 278:175–178.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Tanzawa, K., and Takahashi, S., 1994, Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 269:369–372.

    PubMed  CAS  Google Scholar 

  • Takei, K., Mignery, G. A., Mugnaini, E., Südhof, T. C., and De Camilli, P., 1994, Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells, Neuron 12:327–342.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., and Tashjian, A. H., Jr., 1994, Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling, J. Biol. Chem. 269:11247–11253.

    PubMed  CAS  Google Scholar 

  • Tasaka, K., Mio, M., Akagi, M., Fujisawa, K., and Aoki, I., 1991, Role of the cytoskeleton in Ca2+ release from the intracellular Ca store of rat peritoneal mast cells, Agents Actions 33:44–47.

    PubMed  CAS  Google Scholar 

  • Taylor, C. W., and Potter, B. V. L., 1990, The size of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores depends on inositol 1,4,5-trisphosphate concentration, Biochem. J. 266:189–194.

    PubMed  CAS  Google Scholar 

  • Taylor, C. W., and Richardson, A., 1991, Structure and function of inositol trisphosphate receptors, Pharmacol. Ther. 51:97–137.

    PubMed  CAS  Google Scholar 

  • Thorn, P., Brady, P., Llopis, J., Gallacher, D. V., and Petersen, O. H., 1992, Cytosolic Ca2+ spikes evoked by the thiol reagent thimerosal in both intact and internally perfused single pancreatic acinar cells, Pflugers Arch. 422:173–178.

    PubMed  CAS  Google Scholar 

  • Thorn, P., Lawrie, A. M., Smith, P. M., Gallacher, D. V., and Petersen, O. H., 1993, Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate, Cell 74:661–668.

    PubMed  CAS  Google Scholar 

  • Toescu, E. C., O’Neill, S. C., Petersen, O. H., and Eisner, D. A., 1992, Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production, J. Biol. Chem. 267:23467–23470.

    PubMed  CAS  Google Scholar 

  • Tregear, R., Dawson, A. P., and Irvine, R. F., 1991, Quantal release of Ca2+ from intracellular stores by InsP3: Tests of the concept of control of Ca2+ release by intraluminal Ca2+, Proc. R. Soc. Lond. [Biol.] 243:263–268.

    CAS  Google Scholar 

  • Tshipamba, M., De Smedt, H., Missiaen, L., Himpens, B., Van Den Bosch, L., and Borghgraef, R., 1993, Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in renal epithelial LLC-PK1 cells, J. Cell. Physiol. 155:96–103.

    PubMed  CAS  Google Scholar 

  • Tsukioka, M., Iino, M., and Endo, M., 1994, pH dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized smooth muscle cells of the guinea-pig, J. Physiol. 475:369–375.

    PubMed  CAS  Google Scholar 

  • Tsunada, Y., 1986, An ATP-dependent and inositol trisphosphate-sensitive Ca2+ pool linked with microfilaments of the parietal cell, FEBS Lett. 207:47–52.

    Google Scholar 

  • Van Delden, C., Foti, M., Lew, D. P., and Krause, K. H., 1993, Ca2+ and Mg2+ regulation of inositol 1,4,5-trisphosphate binding in myeloid cells, J. Biol. Chem. 268:12443–12448.

    PubMed  Google Scholar 

  • Varney, M. A., Rivera, J., Lopez Bernal, A., and Watson, S. P., 1990, Are there subtypes of the inositol 1,4,5-trisphosphate receptor? Biochem. J. 269:211–216.

    PubMed  CAS  Google Scholar 

  • Volpe, P., and Alderson-Lang, B. H., 1990, Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release II. Effect of cAMP-dependent protein kinase, Am. J. Physiol. 258:C1086–C1091.

    PubMed  CAS  Google Scholar 

  • Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M., and Fleischer, S., 1989, Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum, Nature 338:167–170.

    PubMed  CAS  Google Scholar 

  • Wakui, M., Potter, B. V. L., and Petersen, O. H., 1989, Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration, Nature 339:317–320.

    PubMed  CAS  Google Scholar 

  • Wakui, M. Osipchuk, Y. V., and Petersen, O. H., 1990, Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release, Cell 63:1025–1032.

    PubMed  CAS  Google Scholar 

  • White, A. M., Varney, M. A., Watson, S. P., Rigby, S., Changsheng, L., Ward, J. G., Reese, C. B., Graham, H. C., and Williams, R. J. P., 1991, Influence of Mg2+ and pH on n.m.r. spectra and radioligand binding of inositol 1,4,5-trisphosphate, Biochem. J. 278:759–764.

    PubMed  CAS  Google Scholar 

  • White, A. M., Varney, M. A., Maeda, M., Mikoshiba, K., and Watson, S. P., 1993, Comparison of Ins(l,4,5)P3 receptors from rat cerebellum and bovine adrenal cortex, Biochim. Biophys. Acta 1175:307–311.

    PubMed  CAS  Google Scholar 

  • Wilcox, R. A., Whitham, E. M., Liu, C., Potter, B. V. L., and Nahorski, S. R., 1993, Myo-inositol 1,3,4,5-tetrakisphosphate can independently mobilise intracellular calcium, via the inositol 1,4,5-trisphosphate receptor: Studies with myo-inositol l,4,5-trisphosphate-3-phosphorothioate and myo-inositol hexakisphosphate, FEBS Lett. 336:267–271.

    PubMed  CAS  Google Scholar 

  • Wilcox, R. A., Safrany, S. T., Lampe, D., Mills, S. J., Nahorski, S. R., and Potter, B. V. L., 1994, Modification at C2 of myo-inositol 1,4,5-trisphosphate produces inositol trisphosphates and tetrakisphosphates with potent biological activities, Eur. J. Biochem. 223:115–124.

    PubMed  CAS  Google Scholar 

  • Wojcikiewicz, R. J. H., Furuichi, T., Nakade, S., Mikoshiba, K., and Nahorski, S. R., 1994, Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation, J. Biol. Chem. 269:7963–7969.

    PubMed  CAS  Google Scholar 

  • Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H., 1986, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319:600–602.

    PubMed  CAS  Google Scholar 

  • Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S., and Snyder, S. H., 1987, Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium, J. Biol. Chem. 262:12132–12136.

    PubMed  CAS  Google Scholar 

  • Yamada, N., Makino, Y., Clark, R. A., Pearson, D. W., Mattel, M.-G., Guénet, J.-L., Ohama, E., Fujino, L, Miyawaki, A., Furuichi, T., and Mikoshiba, K., 1994, Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3Rl: Structure, function, regulation of expression and chromosomal localization, Biochem. J. 302:781–790.

    PubMed  CAS  Google Scholar 

  • Yamamoto-Hino, M., Sugiyama, T., Hikichi, K., Mattei, M. G., Hasegawa, K., Sekine, S., Sakurada, K., Miyawaki, A., Furuichi, T., Hasegawa, M., and Mikoshiba, K., 1994, Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors, Receptors Channels 2:9–22.

    PubMed  CAS  Google Scholar 

  • Yao, Y., and Parker, I., 1992, Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+, J. Physiol. 458:319–338.

    PubMed  CAS  Google Scholar 

  • Yoo, S. H., 1994, pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-trisphosphate receptor antibody, J. Biol. Chem. 269:12001–12006.

    PubMed  CAS  Google Scholar 

  • Yoo, S. H., and Lewis, M. S., 1994, pH-dependent interaction of an intraluminal loop of inositol 1,4,5-trisphosphate receptor with chromogranin A, FEBS Lett. 341:28–32.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, M., Tanimura, T., Miyawaki, A., Nakamura, M., Yuzaki, M., Furuichi, T., and Mikoshiba, K., 1992, Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster, J. Biol. Chem. 267:16613–16619.

    PubMed  CAS  Google Scholar 

  • Zhang, B. X., and Muallem, S., 1992, Feedback inhibition of Ca2+ release by Ca2+ is the underlying mechanism of agonist-evoked intracellular Ca2+ oscillations in pancreatic acinar cells, J. Biol. Chem. 267:24387–24393.

    PubMed  CAS  Google Scholar 

  • Zhang, B. X., Zhao, H., and Muallem, S., 1993, Ca2+-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation, J. Biol. Chem. 268:10997–11001.

    PubMed  CAS  Google Scholar 

  • Zhao, H., Khademazad, M., and Muallem, S., 1990a, Agonist-mediated Ca2+ release in per-meabilized UMR-106-01 cells. Transport properties and generation of inositol 1,4,5-trisphosphate, J. Biol. Chem. 265:14822–14827.

    PubMed  CAS  Google Scholar 

  • Zhao, H., Loessberg, P. A., Sachs, G., and Muallem, S., 1990b, Regulation of intracellular Ca2+ oscillations in AR42J cells, J. Biol. Chem. 265:20856–20862.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Missiaen, L., Parys, J.B., De Smedt, H., Sienaert, I., Bootman, M.D., Casteels, R. (1996). Control of the Ca2+ Release Induced by myo-Inositol Trisphosphate and the Implication in Signal Transduction. In: Biswas, B.B., Biswas, S. (eds) myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Subcellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0343-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0343-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8007-8

  • Online ISBN: 978-1-4613-0343-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics