Phosphoinositides and Synaptic Transmission

  • John N. Hawthorne
Part of the Subcellular Biochemistry book series (SCBI, volume 26)

Abstract

The isolation of a “diphosphoinositide” fraction from ox brain by Folch (1949) and the observation by Dawson (1954) that radioactive phosphate was rapidly incorporated into its lipids laid the foundations of our present knowledge of the brain phosphoinositides. The structures of the major phosphoinositides, phosphatidylinositol (I), phosphatidylinositol-4 phosphate (II) and phosphatidylinositol-4,5-biphosphate (III) are given in Figure 1. The generally accepted abbreviations used in this chapter are Ptdlns (I), PtdIns 4-P (II), and PtdIns 4,5-P2 (III).

Keywords

Hydrolysis Lipase Acetylcholine Neuroblastoma Photolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977, Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with 32P phosphate, Biochem. J. 162:61–73.PubMedGoogle Scholar
  2. Allison, J.H., Blisner, M. E., Holland, W. H., Hipps, P. P., and Sherman, W. R., 1976, Increased brain myo-inositol 1-phosphate in lithium-treated rats, Biochem. Biophys. Res. Commun. 71:664–670.PubMedCrossRefGoogle Scholar
  3. Asaoka, Y., Nakamura, S., Yoshida, K., and Nishizuka, Y., 1992, Protein kinase C., calcium and phospholipid degredation, Trends Biochem. Sci. 17:414–417.PubMedCrossRefGoogle Scholar
  4. Batty, I. H., and Downes, C. P., 1994, The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediatied phospholipase C activity by Li+ as secondary, selective consequences of inositol depletion in 1321N1 cells, Biochem. J. 297:529–537.PubMedGoogle Scholar
  5. Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215.PubMedGoogle Scholar
  6. Berridge, M. J., 1983, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212:849–858.PubMedGoogle Scholar
  7. Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.PubMedCrossRefGoogle Scholar
  8. Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.PubMedCrossRefGoogle Scholar
  9. Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G., and Ross, E. M., 1992, Phospholipase Cβ1 is a GTPase-activating protein for Gq11, its physiologic regulator, Cell 70:411–418.PubMedCrossRefGoogle Scholar
  10. Blank, J. L., Shaw, K., Ross, A. H., and Exton, J. H., 1993, Purification of a 110-kDa phosphoinositide phospholipase C that is activated by G protein β-subunits, J. Biol. Chem. 268:25184–25191.PubMedGoogle Scholar
  11. Bothmer, J., and Jolies, J., 1994, Phosphoinositide metabolism, aging and Alzheimer’s disease, Biochim. Biophys. Acta 1225:111–124.PubMedGoogle Scholar
  12. Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphos-phate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Bio-chem. J. 212:733–747.Google Scholar
  13. Dawson, R. M. C., 1954, The measurement of 32P labelling of individual kephalins and lecithin in a small sample of tissue, Biochim. Biophys. Acta 14:374–379.PubMedCrossRefGoogle Scholar
  14. Dawson, R. M. C., 1959, Studies on the enzymatic hydrolysis of monophosphoinositide by phospho-lipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68–77.PubMedCrossRefGoogle Scholar
  15. del Rio, E., Nicholls, D. G., and Downes, C. P., 1994, Involvement of calcium influx in muscarinic cholinergic regulation of phospholipase C in cerebellar granule cells, J. Neurochem. 63:535–543.PubMedGoogle Scholar
  16. Donie, F., and Reiser, G., 1991, Purification of a high-affinity inositol 1,3,4,5-tetrakisphosphate receptor from brain, Biochem. J. 275:453–457.PubMedGoogle Scholar
  17. Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H., 1992, Auto-phosphorylation of inositol 1,4,5-P3 receptors, J. Biol. Chem. 267:7036–7041.PubMedGoogle Scholar
  18. Fisher, S. K., Domask, L. M., and Roland, R. M., 1989, Muscarinic receptor regulation of cytoplasmic Ca2+ concentrations in human SK-N-SH neuroblastoma cells: Ca2+ requirements for phospholipase C activation, Mol. Pharmacol. 35:195–204.PubMedGoogle Scholar
  19. Fisher, S. K., Heacock, A. M., and Agranoff, B.W., 1992, Inositol lipids and signal transduction in the nervous system: An update, J. Neurochem. 58:18–38.PubMedCrossRefGoogle Scholar
  20. Folch, J., 1949, Complete fractionation of brain cephalin: Isolation from it of phosphatidyl serine, phosphatidyl ethanolamine and diphosphoinositide, J. Biol. Chem. 177:497–504.PubMedGoogle Scholar
  21. Fouchier, F., Baltz, T., and Rougon, G., 1990, Identification of glycosylphosphatidylinositol-specific phospholipases C in mouse brain membranes, Biochem. J. 269:321–327.PubMedGoogle Scholar
  22. Fry, M. J., Panayotou, G., Dhand. R., Ruiz-Larrea, F., Gout, I., Nguyen, O., Courtneidge, S. A., and Waterfield, M. D., 1992. Purification and characterization of a phosphatidylinositol 3-ki-nase complex from bovine brain by using phosphopeptide affinity columns, Biochem. J. 288:383–393.PubMedGoogle Scholar
  23. Gani, D., Downes, C. P., Batty, I., and Bramham, J., 1993, Lithium and myo-inositol homeostasis, Biochim. Biophys. Acta 1177:253–269.PubMedCrossRefGoogle Scholar
  24. Gee, N. S., Ragan, C. I., Watling, K. J., Aspley, S., Jackson, R. G., Reid, G. G., Gani, D., and Shute, J. K., 1988, The purification and properties of myo-inositol monophosphatase from bovine brain, Biochem. J. 249:883–889.PubMedGoogle Scholar
  25. Gusovsky, F., Yasumoto, T., and Daly, J. W., 1989, Calcium-dependent effects of maitotoxin on phosphoinositide breakdown and on cyclic AMP accumulation in PC 12 and NCB20 cells, Mol. Pharmacol. 36:44–53.PubMedGoogle Scholar
  26. Hoener, M. C., Stieger, S., and Brodbeck, U., 1990, Isolation and characterization of a phosphatidylinositol glycan-anchor-specific phospholipase D from bovine brain, Eur. J. Biochem. 190:593–601.PubMedCrossRefGoogle Scholar
  27. Hokin, L. E., and Hokin, M. R., 1958, Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide, J. Biol. Chem. 233:818–821.PubMedGoogle Scholar
  28. Houslay, M. D., 1991, Crosstalk: A pivotal role for protein kinase C in modulating relationships between signal transduction pathways, Eur. J. Biochem. 195:9–27.PubMedCrossRefGoogle Scholar
  29. Hubscher, G., and Hawthorne, J. N., 1957, The isolation of inositol monophosphate from liver, Biochem. J. 67:523–527.PubMedGoogle Scholar
  30. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986, The inositol tris/tetrakisphos-phate pathway—demonstration of Ins 1,4,5-P3 3-kinase activity in animal tissues, Nature 320:631–634.PubMedCrossRefGoogle Scholar
  31. Jhon, D.-Y., Lee, H.-H., Park, D., Lee, C.-W., Lee, K.-H., Yoo, O. J., and Rhee, S. G., 1993, Cloning, sequencing, purification of Gq-dependent activation of phospholipase Cβ3, J. Biol. Chem. 268:6654–6661.PubMedGoogle Scholar
  32. Johanson, R. A., Hansen, C. A., and Williamson, J. R., 1988, Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain, J. Biiol. Chem. 263:7465–7471.Google Scholar
  33. Jope, R. S., and Williams, M. B., 1994, Lithium and brain signal transduction systems, Biochem. Pharmacol. 47:429–441.PubMedCrossRefGoogle Scholar
  34. Kai, M., Salway, J. G., and Hawthorne, J. N., 1968, The diphosphoinositide kinase of rat brain, Biochem. J. 106:791–801.PubMedGoogle Scholar
  35. Kemp, P., Hubscher, G., and Hawthorne, J. N., 1959, A liver phospholipase hydrolysing phospho-inositides, Biochim. Biophys. Acta 31:585–586.PubMedCrossRefGoogle Scholar
  36. Kemp, P., Hubscher, G., and Hawthorne, J. N., 1961, Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193–200.PubMedGoogle Scholar
  37. Klann, E., Chen, S., and Sweatt, J. D., 1993, Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate, Proc. Natl. Acad. Sci. U.S.A. 90:8337–8341.PubMedCrossRefGoogle Scholar
  38. Klenk, E., and Hendricks, U. W., 1961, An inositol phosphatide containing carbohydrate, isolated from human brain, Biochim. Biophys. Acta 50:602–603.PubMedCrossRefGoogle Scholar
  39. Litwack, E. D., Stipp, C. S., Kumbasar, A., and Lander, A. D., 1994, Neuronal expression of glypican, a cell-surface glycosylphosphatidylinositol-anchored heparan sulphate proteoglycan, in the adult rat nervous system, J. Neurosci. 14:3713–3724.PubMedGoogle Scholar
  40. Low, M. G., 1987, Biochemistry of the glycosylphosphatidylinositol membrane protein anchors, Biochem. J. 224:1–13.Google Scholar
  41. Luckhoff, A., and Clapham, D. E., 1992, Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel, Nature 355:356–358.PubMedCrossRefGoogle Scholar
  42. Mansson, J.-E., Rynmark, B.-M., and Svennerholm, L., 1991, A novel inositol-containing gly-cosphingolipid isolated from human peripheral nerve, FEBS Lett. 280:251–253.PubMedCrossRefGoogle Scholar
  43. McConville, M. J., and Ferguson, M. A. J., 1993, The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes, Biochem. J. 294:305–324.PubMedGoogle Scholar
  44. Micheli, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.Google Scholar
  45. Mignery, G. A., Newton, C. L., Archer, B. T. III, and Sudhof, T. C., 1990, Structure and expression of the rat inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 265:12679–12685.PubMedGoogle Scholar
  46. Minisclou, C., Rouquier, L., Benavides, J., Scatton, B., and Claustre, Y., 1994, Muscarinic receptor-mediated increases in extracellular inositol 1,4,5-trisphosphate levels in the rat hippocampus: An in vivo microdialysis study, J. Neurochem. 62:557–562.PubMedCrossRefGoogle Scholar
  47. Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature 334:661–665.PubMedCrossRefGoogle Scholar
  48. Oda, T., Shearman, M. S., and Nishizuka, Y., 1991, Synaptosomal protein kinase C subspecies: Down-regulation promoted by phorbol ester and its effect on evoked norepinephrine release, J. Neurochem. 56:1263–1269.PubMedCrossRefGoogle Scholar
  49. Rhee, S. G., 1991, Inositol phospholipid-specific phospholipase C: Interaction of the γ1 isoform with tyrosine kinase, Trends Biochem. Sci. 16:297–301.PubMedCrossRefGoogle Scholar
  50. Rhee, S. G., and Choi, K. D., 1992, Regulation of inositol phospholipid-specific phospholipase C isozymes, J. Biol. Chem. 267:12393–12396.PubMedGoogle Scholar
  51. Rhee, S. G., Suh, P.-G., Ryu, S.-H., and Lee, S. Y., 1989, Studies of inositol phospholipid-specific phospholipase C., Science 244:546–550.PubMedCrossRefGoogle Scholar
  52. Salles, J., Wallace, M. A., and Fain, J. N., 1993, Modulation of the phospholipase C activity in rat brain cortical membranes by simultaneous activation of distinct monoaminergic and cholinergic muscarinic receptors, Mol. Brain Res. 20:111–117.PubMedCrossRefGoogle Scholar
  53. Shearman, M. S., Sekiguchi, K., and Nishizuka, Y., 1989, Modulation of ion channel activity: A key function of the protein kinase C enzyme family, Pharmacol. Rev. 41:211–237.PubMedGoogle Scholar
  54. Shearman, M. S., Shinomura, T., Oda, T., and Nishizuka, Y., 1991, Synaptosomal protein kinase C subspecies: Dynamic changes in the hippocampus and cerebellar cortex concomitant with synap-togenesis, J. Neurochem. 56:1255–1262.PubMedCrossRefGoogle Scholar
  55. Shears, S. B., 1989, Metabolism of the inositol phosphates produced upon receptor activation, Biochem. J. 260:313–324.PubMedGoogle Scholar
  56. Stokes, C. E., and Hawthorne, J. N., 1987, Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains, J. Neurochem. 48:1018–1021.PubMedCrossRefGoogle Scholar
  57. Stokes, C. E., Gillon, K. R. W., and Hawthorne, J. N., 1983, Free and total lipid myo-inositol concentrations decrease with age in human brain, Biochim. Biophys. Acta 753:136–138.PubMedGoogle Scholar
  58. Varticovski, L., Harrison-Findik, D., Keeler, M. L., and Susa, M., 1994, Role of PI 3-kinase in mitogenesis, Biochim. Biophys. Acta 1226:1–11.PubMedGoogle Scholar
  59. Wilcox, R. A., Whitham, E. M., Liu, C., Potter, B. V. L., and Nahorski, S. R., 1993, myo-Inositol 1,3,4,5-tetrakisphosphate can independently mobilize intracellular calcium, via the inositol 1,4,5-trisphosphate receptor: Studies with myo-inositol 1,4,5-trisphosphate 3-phosphorothioate and myo-inositol hexakisphosphate, FEBS Lett. 336:267–271.PubMedCrossRefGoogle Scholar
  60. Wojcikiewicz, R. J. H., Furnichi, T., Nakada, S., Mikoshiba, K., and Nahorski, S. R., 1994, Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation, J. Biol. Chem. 269:7963–7969.PubMedGoogle Scholar
  61. Wood, P. C., Wojcikiewicz, R. J. H., Burgess, J., Castledeu, C. M., and Nahorski, S. R., 1994, Aluminium inhibits muscarinic agonist-induced inositol 1,4,5-trisphosphate production and calcium mobilization in permeabilized SH-SY5Y human neuroblastoma cells, J. Neurochem. 62:2219–2223.PubMedCrossRefGoogle Scholar
  62. Yagisawa, H., Hirata, M., Kanematsu, T., Watanabe, Y., Ozaki, S., Sakuma, K., Tanaka, H., Yabuta, N., Kamata, H., Hirata, H., and Nojima, H., 1994, Expression and characterization of an inositol 1,4,5-triphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1, J. Biol. Chem. 269:20179–20188.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • John N. Hawthorne
    • 1
  1. 1.Department of BiochemistryMedical School, Queen’s Medical CentreNottinghamUK

Personalised recommendations