Advertisement

Light-Induced Signal Transduction Pathway Involving Inositol Phosphates

  • Sudhir K. Sopory
  • Meena R. Chandok
Part of the Subcellular Biochemistry book series (SCBI, volume 26)

Abstract

Signals such as light, hormones, and gravity control diverse physiological and developmental processes throughout the life cycle of plants. How a plant senses these signals and then responds in an appropriate manner has been a subject of great interest. In animal systems, the mechanism of transduction of extracellular signals into intracellular events has been studied in great detail. It involves two major signal pathways. The first pathway employs the messenger cyclic adenosine monophosphate (cyclic AMP), and the second pathway involves a combination of messengers that include inositol trisphosphate (InsP3), diacylglycerol (DAG), and calcium ion (Berridge and Irvine, 1984; Nishizuka, 1986, 1988; Berridge, 1987).

Keywords

Nitrate Reductase Phorbol Myristate Acetate Inositol Phosphate Inositol Phospholipid Phototropic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, M. K., Dureja-Munjal, I., and Mukherjee, S., 1991, Light-induced rapid changes in inositol phospholipids and phosphatidyl choline in Brassica seedlings, Phytochemistry 30:2895–2897.Google Scholar
  2. Ahmad, M., and Cashmore, A. R., 1993, HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature 366:162–164.PubMedGoogle Scholar
  3. Alexandre, J., Lassalles, J. P., and Kado, R. T., 1990, Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate, Nature 343:567–570.Google Scholar
  4. Algarra, P., Linder, S., and Thummler, F., 1993, Biochemical evidence that phytochrome of the moss Ceratodon purpureus is a light regulated protein kinase, FEBS Lett. 315:69–73.PubMedGoogle Scholar
  5. Bagga, S., Das, R., and Sopory, S. K., 1987, Inhibition of cell proliferation and glyoxalase-I activity by calmodulin inhibitors and lithium in Brassica oleracea, J. Plant Physiol. 129:149–153.Google Scholar
  6. Berridge, M. J., 1987, Inositol trisphosphate and diacylglycerol: Two integrating second messengers, Annu. Rev. Biochem. 56:159–193.PubMedGoogle Scholar
  7. Berridge, M. J., and Irvine, R. F., 1984, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.PubMedGoogle Scholar
  8. Berridge, M. J., Dawson, R.M.C., Downes, C. P., Heslop, J. P., and Irvine, R. F., 1983, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phospho-inositides, Biochem. J. 212:473–482.PubMedGoogle Scholar
  9. Bhatla, S. C., 1994, Moss Protonema Differentiation, Research Studies Press, Taunton, England.Google Scholar
  10. Biffen, M., and Hanke, D., 1990, Polyphosphoinositide activity in soybean membrane is Ca2+ dependent and shows no requirement for guanine nucleotides, Plant Sci. 69:147–155.Google Scholar
  11. Biswas, B. B., Biswas, S., Chakrabarty, S., and De, B. P., 1978, A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds, in Cyclitols and Phosphos-phoinositides (W.W.F. Eisenberg, Jr., ed.), pp. 57–68, Academic Press, New York.Google Scholar
  12. Bilush, S. V., Shebunin, A. G., and Babakov, A. V., 1991, Purification and subunit composition of a GTP-binding protein from maize root plasma membrane, FEBS Lett. 291:219–221.Google Scholar
  13. Blatt, M. R., Thiel, G., and Trentham, D. R., 1990, Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate, Nature 346:766–768.PubMedGoogle Scholar
  14. Blowers, D. P., and Trewavas, A. J., 1988, Phosphatidylinositol kinase activity of a plasma membrane-associated calcium-activated protein kinase from pea, FEBS Lett. 238:87–89.Google Scholar
  15. Blum, W., Hinsch, K. D., Schultz, G., and Weiler, E. W., 1988, Identification of GTP binding proteins in the plasma membrane of higher plants, Biochem. Biophys. Res. Commun. 156:954–959.PubMedGoogle Scholar
  16. Boss, W. F., and Massel, M. O., 1985, Polyphosphoinositides are present in plant tissue culture cells, Biochem. Biophys. Res. Commun. 132:1018–1023.PubMedGoogle Scholar
  17. Boss, W. F., and Moore, J. D., 1989, Second Messengers in Plant Growth and Development, Alan R. Liss, New York.Google Scholar
  18. Bossen, M. G., Kendrick, R. E., and Vredenberg, W. J., 1990, The involvement of a G-protein in phytochrome-regulated Ca2+-dependent swelling of etiolated wheat protoplasts, Physiol. Plant. 80:55–62.Google Scholar
  19. Bowler, C., Neuhaus, G., Yamagata, H., and Chua, N. H., 1994, Cyclic GMP and calcium mediated phytochrome phototransduction, Cell 77:73–81.PubMedGoogle Scholar
  20. Brown, E. F., and Newton, R. P., 1981, Cyclic AMP in higher plants, Phytochemistry 20:2453–2463.Google Scholar
  21. Chandok, M. R., 1993, Molecular Nature of Signal Transduction in Phytochrome Mediated Stimulation of Nitrate Reductase in Maize: Involvement of Protein Kinase C and Phosphoinositides, Ph.D. thesis, Jawaharlal Nehru University, New Delhi.Google Scholar
  22. Chandok, M. R., and Sopory, S. K., 1992, Phorbol myristate acetate replaces phytochrome-mediated stimulation of nitrate reductase in maize, Phytochemistry 31:2255–2258.Google Scholar
  23. Chandok, M. R., and Sopory, S. K., 1994, 5-Hydroxytryptamine affects turnover of phosphoinositides and stimulates nitrate reductase in absence of light, FEBS Lett. 356:39–42.PubMedGoogle Scholar
  24. Chandok, M. R., and Sopory, S. K., 1995, Signal response coupling in light mediated stimulation of enzymes, Trans. Bose Res. Inst. Calcutta (in press).Google Scholar
  25. Chicha, A., Demandre, C., Justin, A., and Mazliak, P., 1994, The molecular species of phosphatidylinositol and phosphatidylinositol phosphate evidenced in the coleoptiles and first leaves of maize (Zea mays L.), C. R. Acad. Sci. Paris 317:419–423.Google Scholar
  26. Choquette, D., Hakim, G., Foloteo, A. G., Plisher, G. A., Bostwick, J. R., and Penniston, J. T., 1984, Regulation of plasma membrane Ca2+ ATPases by phosphatidylinositol cycle, Biochem. Biophys. Res. Commun. 125:908–915.PubMedGoogle Scholar
  27. Clark, G. B., Memon, A. R., Tong, C. G., Thompson, G. A., Jr., and Roux, S. J., 1993, Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei, Plant J. 4:399–402.PubMedGoogle Scholar
  28. Cornelius, G., and Nakashima, H., 1987, Vacuoles play a decisive role in calcium homeostasis in Neurospora crassa, J. Gen. Microbiol. 133:2341–2347.Google Scholar
  29. Corson, D. W., and Fein, A., 1987, Inositol 1,4,5-trisphosphate induces bursts of calcium release inside Limulus ventral photoreceptors, Brain Res. 423:343–346.PubMedGoogle Scholar
  30. Coté, G. G., and Crain, R. C., 1993, Biochemistry of phosphoinositides, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356.Google Scholar
  31. Coté, G. G., and Crain, R. C., 1994, Why do plants have phosphoinositides?, Bioessays 16:39–46.Google Scholar
  32. Das, R., and Sopory, S. K., 1985, Evidence of regulation of calcium uptake by phytochrome in maize protoplasts, Biochem. Biophys. Res. Commun. 128:1455–1460.PubMedGoogle Scholar
  33. Das, R., Bagga, S., and Sopory, S. K., 1987, Involvement of polyphosphoinositides, calmodulin and glyoxalase I in cell proliferation in callus cultures of Amaranthus paniculatus, Plant Sci. 53:45–57.Google Scholar
  34. Dillenschneider, A., Hetherington, A., Graziana, A., Alibert, G., Berta, P., Haiech, J., and Ran-jeva, R., 1986, The formation of inositol phosphate derivatives by isolated membranes from Acer pseudoplatanus is stimulated by guanine nucleotides, FEBS Lett. 208:413–417.Google Scholar
  35. Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:697–712.PubMedGoogle Scholar
  36. Drøbak, B. K., 1993, Plant phosphoinositides and intracellular signalling, Plant Physiol. 102:705–709.PubMedGoogle Scholar
  37. Drøbak, B. K., and Ferguson, I. B. 1985, Release of calcium from plant hypocotyl microsomes by inositol 1,4,5-trisphosphate. Biochem. Biophys. Res. Commun. 130:1241–1246.PubMedGoogle Scholar
  38. Drøbak, B. K., Allan, E. F., Comerford, J. G., Roberts, K., and Dawson, A. P., 1988, Presence of guanine nucleotide-binding proteins in plant hypocotyl microsomal fraction, Biochem. Biophys. Res. Commun. 150:899–903.PubMedGoogle Scholar
  39. Drøbak, B. K., Watkins, P.A.C., Valenta, R., Dove, S. K., Lloyd, C. W., and Straiger, C. J., 1994, Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding, profilin, Plant J. 6:389–400.Google Scholar
  40. Einspahr, K. J., Peeler, T. C., and Thompson, G. A., Jr., 1989, Phosphatidylinositol 4,5-bisphosphate, phospholipase C., and Phosphomonoesterase in Dunaliella salina membranes, Plant Physiol. 90:1115–1120.PubMedGoogle Scholar
  41. Elliot, D. C., and Kokke, Y. S., 1987, Partial purification and properties of a protein kinase C type enzyme from plants, Phytochemistry 26:2929–2935.Google Scholar
  42. Elliot, D. C., Fournier, A., and Kokke, Y. S., 1988, Phosphatidylserine activation of plant protein kinase C., Phytochemistry 27:3725–3730.Google Scholar
  43. Ettlinger, C., and Lehle, L., 1988, Auxin induces rapid changes in phosphatidylinositol metabolites, Nature 331:176–178.PubMedGoogle Scholar
  44. Favre, B., and Turian, G., 1987, Identification of a calcium and phospholipid dependent protein kinase (protein kinase C) in Neurospora crassa, Plant Sci. 49:15–21.Google Scholar
  45. Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation, adaptation by inositol 1,4,5-trisphosphate, Nature 311:157–160.PubMedGoogle Scholar
  46. Gilroy, S., Read, N. D., and Trewavas, A. J., 1990, Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure, Nature 346:768–770.Google Scholar
  47. Guron, K., Chandok, M. R., and Sopory, S. K., 1992, Phytochrome-mediated rapid changes in the levels of phosphoinositides in etiolated leaves of Zea mays, Photochem. Photobiol. 56:691–695.Google Scholar
  48. Hartmann, E., and Jenkins, G., 1984, Photomorphogenesis of mosses and liverworts, in The Experimental Biology of Bryophytes (A. F. Dyer, ed.), pp. 203–228, Academic Press, London.Google Scholar
  49. Hartmann, E., and Pfaffmann, H., 1990, Phosphatidylinositol and phytochrome-mediated phototrop-ism of moss protonema tip cells, in Inositol Metabolism in Plants (D. J. Moore, W. F. Boss, and F. A. Loewus, eds.), pp. 259–275, Wiley-Liss, New York.Google Scholar
  50. Hartmann, E., and Weber, M., 1988, Storage of phytochrome-mediated phototropic response of moss protonemal cells, Planta 175:39–49.Google Scholar
  51. Harwood, J. L., 1980, Lipids: Structure and function, in The Biochemistry of plants, Vol. 4 (P. K. Stumpf, ed.), pp. 1–55, Academic Press, New York.Google Scholar
  52. Hasunuma, K., and Funadera, K., 1987, GTP-binding protein(s) in green plant, Lemna paucicostata, Biochem. Biophys. Res. Commun. 143:908–912.Google Scholar
  53. Hasunuma, K., Furaukawa, K., Funadera, K., Kubota, M., and Watanabe, M., 1987a, Partial characterization and light-induced regulation of GTP-binding proteins in Lemna paucicostata, Photochem. Photobiol. 46:531–535.Google Scholar
  54. Hasunuma, K., Furaukawa, K., Tornita, K., Mukai, C., and Nakamura, T., 1987b, GTP-binding proteins in etiolated epicotyls of Pisum sativum (Alaska) seedlings, Biochem. Biophys. Res. Commun. 148:133–139.PubMedGoogle Scholar
  55. Hayashi, F., Sokabe, M., Takagi, M., Hayashi, K., and Kishimoto, U., 1978, Calcium-sensitive univalent cation channel formed by lysotriphosphoinositide in bilayer lipid membranes, Bio-chim. Biophys. Acta 510:305–315.Google Scholar
  56. Helsper, J.P.F.G., DeGroot, P.F.M., Linskens, H. F., and Jackson, J. F., 1986, Phosphatidylinositol phospholipase C activity in pollen in Lilium longiflorum, Biochem. J. 25:2053–2055.Google Scholar
  57. Hepler, P. K., and Wayne, R. O., 1985, Calcium and plant development, Annu. Rev. Plant Physiol. 35:397–439.Google Scholar
  58. Irvine, R. F., Letcher, A. J., Lander, D. J., Drobak, B. K., Dawson, A. P., and Musgraue, A., 1989, Phosphatidylinositol(4,5)biophosphate and phosphatidylinositol(4)phosphate in plant tissues, Plant Physiol. 89:888–892.PubMedGoogle Scholar
  59. Jacobs, M., Thelen, M. P., Farndale, R. W., Astle, M. C., and Rubey, P. H., 1988, Specific guanine nucleotide binding by membranes from Curcurbita pepo seedlings, Biochem. Biophys. Res. Commun. 155:1478–1484.PubMedGoogle Scholar
  60. Kim, H. Y., Coté, G. G., and Crain, R. C., 1992, Effect of light on the membrane potential of protoplasts from Samanea saman pulvini: Involvement of K+ and H+-ATPase, Plant Physiol. 99:1532–1539.PubMedGoogle Scholar
  61. Kim, H. Y., Coté, G. G., and Crain, R. C., 1993, Potassium channels in Samanea saman protoplasts controlled by phytochrome and biological clock, Science 260:960–962.PubMedGoogle Scholar
  62. Kurosaki, F., Tsurusawa, Y., and Nishi, A., 1987, Breakdown of phosphatidyl inositol during elicitation of phytoalexin production in cultured cells, Plant Physiol. 85:601–604.PubMedGoogle Scholar
  63. Litosh, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands: Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260:5464–5471.Google Scholar
  64. Longeran, T. A., 1990, Steps linking the photosynthetic light reaction to the biological clock require calcium, Plant Physiol. 93:110–115.Google Scholar
  65. McMurray, W. C., and Irvine, R. F., 1988, Phosphatidyl-4,5-biphosphate phosphodiesterase in higher plants, Biochem. J. 249:877–881.PubMedGoogle Scholar
  66. Melin, P. M., Sommarin, M., Sandelius, A. S., and Jergil, B., 1987, Identification of Ca2+ stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes, FEBS Lett. 223:87–91.PubMedGoogle Scholar
  67. Memon, A. R., and Boss, W. F., 1990, Rapid light-induced changes in phosphoinositide kinases and H+-ATPase in plasma membrane of sunflower hypocotyls, J. Biol. Chem. 265:14817–14821.PubMedGoogle Scholar
  68. Mohr, H., 1972, Lectures on Photomorphogenesis, Springer-Verlag, Berlin.Google Scholar
  69. Morre, D. J., Gripshover, B., Monroe, A., and Morre, J. T., 1984, Phosphatidyl turnover in isolated soybean membranes stimulated by synthetic growth hormone, 2,4-dichlorophenoxyacetic acid, J. Biol. Chem. 259:15364–15368.PubMedGoogle Scholar
  70. Morse, M. J., Crain, R. C., and Satter, R. L., 1987a, Phosphatidylinositol cycle metabolites in Samanea saman pulvinus, Plant Physiol. 83:640–644.PubMedGoogle Scholar
  71. Morse, M. J., Crain, R. C., and Satter, R. L., 1987b, Light-stimulated inositol phospholipid turnover in Samanea saman leaf pulvini, Proc. Natl. Acad. Sci. USA 84:7075–7078.PubMedGoogle Scholar
  72. Morse, M. J., Satter, R. L., Crain, R. C., and Coté, G. G., 1989, Signal transduction and phosphatidylinositol turnover in plants, Physiol. Plant. 76:118–121.Google Scholar
  73. Morse, M. J., Crain, R. C., Coté, G. G., and Satter, R. L., 1990, Light-signal transduction via accelerated inositol phospholipid turnover in Samanea pulvini, in Inositol Metabolism in Plants (J. D. Morre, W. F. Boss, and F. A. Loewus, eds.), PP-201–205, Wiley-Liss, New York.Google Scholar
  74. Murthy, P.P.N., Renders, J. M., and Keranen, L. M., 1989, Phosphoinositides in barley aleurone layers and gibberellic acid induced changes in metabolism, Plant Physiol. 91:1266–1269.PubMedGoogle Scholar
  75. Newton, R. P., and Brown, E. G., 1986, The biochemistry and physiology of cyclic AMP in higher plants, in Hormones, Receptors and Cellular Interactions (C.M. Chadwick and D. R. Garrod, eds.), pp. 115–153. Cambridge University Press, Cambridge, England.Google Scholar
  76. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C., Science 233:305–312.PubMedGoogle Scholar
  77. Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature 334:661–665.PubMedGoogle Scholar
  78. Olah, Z., and Kiss, Z., 1986, Occurrence of lipid and phorbol ester activated protein kinase in wheat cell, FEBS Lett. 195:33–37.Google Scholar
  79. Pal, S., Acharaya, M. K., and Mukherjee, S. G., 1993, Red light-mediated changes in inositol phospholipids and phosphatidylcholine in Brassica hypocotyls, Phytochemistry 32:832–825.Google Scholar
  80. Perdue, D. O., LaFaure, A. K., and Leopold, A. C., 1988, Calcium in the regulation of gravitropism by light, Plant Physiol. 86:1276–1280.PubMedGoogle Scholar
  81. Pfaffmann, H., Hartmann, E., Brightman, A. O., and Morre, D. J., 1987, Phosphatidylinositol specific phospholipase C of plant stems: Membrane associated activity concentrated in plasma membranes, Plant Physiol. 85:1151-1155.PubMedGoogle Scholar
  82. Pical, C., Sandelius, A. S., Melin, P. M., and Sommarin, M., 1992, Polyphosphoinositide phospholipase C in plasma membranes of wheat, Plant Physiol. 100:1296–1303.PubMedGoogle Scholar
  83. Poovaiah, B. W., McFadden, J. J., and Reddy, A.S.N., 1987, The role of calcium ions in gravity signal perception and transduction, Physiol. Plant, 71:401–407.PubMedGoogle Scholar
  84. Poovaiah, B. W., and Reddy, A.S.N., 1987, Calcium messenger system in plants, CRC Crit. Rev. Plant Sci. 6:47–103.PubMedGoogle Scholar
  85. Poovaiah, B. W., and Reddy, A.S.N., 1989, Calcium and root development: Importance of calcium in signal transduction, in Plant Roots (Y. Woisel, A. Eshel, and V. Kaffafi, eds.), pp. Marcel Dekker, New York.Google Scholar
  86. Poovaiah, B. W., and Reddy, A.S.N., 1990a, Turnover of inositol phospholipids and calcium dependent protein phosphorylation in signal transduction, in Inositol Metabolism in Plants (D.J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 335–350, Wiley-Liss, New York.Google Scholar
  87. Poovaiah, B.W., and Reddy, A.S.N., 1990b, The role of calcium in signal transduction, in Proceedings of the International Congress on Plant Physiology (S. K. Sinha, P. V. Sane, S. C. Bhargava, and P. K. Agarwal, eds.), pp. 735–749, Society for Plant Physiology and Biochemistry, New Delhi.Google Scholar
  88. Raghuram, N., and Sopory, S. K., 1995, Evidence for some common signal transduction events for opposite regulation of nitrate reductase and phytochrome-I gene expression by light, Plant Mol. Biol. 29:25–35.PubMedGoogle Scholar
  89. Ranjeva, R., and Boudet, A. M., 1989, Signal Perceptions and Transduction in Higher Plants, Springer-Verlag, New York.Google Scholar
  90. Ranjeva, R., Carrasco, A., and Boudet, A. M., 1988, Inositol triphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells, FEBS Lett. 230:137–141.Google Scholar
  91. Reddy, A.S.N., McFadden, J. J., Friedmann, M., and Poovaiah, B. W., 1987, Signal transduction in plants: Evidence for the involvement of calcium and turnover of inositol phospholipids, Bio-chem. Biophys. Res. Commun. 149:334–339.Google Scholar
  92. Rincon, M., and Boss, W. F., 1987, myo-Inositol triphosphate mobilizes calcium from fusogenic carrot (Daucus carota L.) protoplasts, Plant Physiol. 83:395–398.PubMedGoogle Scholar
  93. Roberts, D. M., and Harmon, A. C., 1992, Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:375–414.Google Scholar
  94. Romero, L. C., Biswal, B., and Song, P. S., 1991a, Protein phosphorylation in isolated nuclei from etiolated Avena seedlings. Effects of red/far-red light and cholera toxin, FEBS Lett. 282:347–380.PubMedGoogle Scholar
  95. Romero, L. C., Sommer, D., Gotor, C., and Song, P. S., 1991b, G-protein in etiolated Avena seedlings. Possible phytochrome regulation, FEBS Lett. 282:341–346.PubMedGoogle Scholar
  96. Roux, S. J., and Serlin, B. S., 1987, Cellular mechanisms controlling light stimulated gravitropism: Role of calcium. CRC Crit. Rev. Plant Sci. 5:205–236.PubMedGoogle Scholar
  97. Roux, S. J., and Slocum, R. D., 1982, Role of calcium in mediating cellular functions important for growth and development in higher plants, in Calcium and Cell Function, Vol. III (W. Y. Cheung, ed.), pp. 409–453, Academic Press, New York.Google Scholar
  98. Roux, S. J., Wayne, R. C., and Datta, N., 1986, Role of calcium ions in phytochrome responses: An update, Physiol. Plant. 66:344–348.PubMedGoogle Scholar
  99. Sandelius, A. S., and Sommarin, M., 1986, Phosphorylation of phosphatidylinositols in isolated plant membranes, FEBS Lett. 201:282–286.Google Scholar
  100. Sasaki, T., Song, J., Koga-Ban, Y., Matsui, E., Fang Fang, Higo, H., Nagasaki, H., Hori, M., Miya, M., Murayamakayano, E., Takiguchi, T., Takasuga, A., Niki, T., Ishimaru, K., Ikeda, H., Yamamoto, Y., Mukai, Y., Ohta, Isamu, Miyadera, N., Havukkala, I. and Minobe, Y., 1994, Toward cataloguing all rice genes: Large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library, Plant J. 6:615–624.PubMedGoogle Scholar
  101. Satter, R. L., Geballe, G. T., Applewhite, P. B., and Glaston, A. W., 1974, Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement, J. Gen. Physiol. 64:413–430.PubMedGoogle Scholar
  102. Satter, R. L., Guggino, S. E., Lonergan, T. A., and Galston, A. W., 1981, The effect of blue and far-red light on rhythmic leaflet movements in Samanea and Albizzia, Plant Physiol. 64:965–968.Google Scholar
  103. Schafer, A., Bygrave, F., Matzenauer, S., and Marme, D., 1985, Identification of a calcium and phospholipid-dependent protein kinase in plant tissue, FEBS Lett. 187:25–28.Google Scholar
  104. Schafer, M., Behele, G., Varsannyi, M., and Heilmeyer, L.M.G., Jr., 1987, Ca+2-regulation of l-(sn-phosphatidyl)-1D-myo-inositol-4-phosphate formation and hydrolysis on sarcoplasmic reticulum Ca+2-transport ATPase: A new principle of phospholipid turnover regulation, Biochem. J. 249:579–587.Google Scholar
  105. Scherer, G., 1990, Phospholipid-activated protein kinase in plants: Coupled to phospholipase A2? in Signal Perception and Transduction in Higher Plants (R. Ranjeva and A. M., Boudet, eds.) pp. 69–82, Springer-Verlag, New York.Google Scholar
  106. Schumaker, K. S., and Sze, H., 1987, Inositol 1,4,5-triphosphate releases calcium from vacuolar membrane vesicles of oat roots, J. Biol. Chem. 262:3944–3946.PubMedGoogle Scholar
  107. Sharma, A. K., Raghuram, N., Chandok, M. R., Das, R., and Sopory, S. K., 1994, Characterization of phytochrome induced transmitter for the stimulation of nitrate reductase in etiolated leaves of maize, J. Exp. Bot. 45:485–490.Google Scholar
  108. Simon, E., Satter, R. L., and Galston, A. W., 1976, Circadian rhythmicity in excised Samanea pulvini II. Resetting the clock of phytochrome conversion, Plant Physiol. 58:421–425.PubMedGoogle Scholar
  109. Sommarin, M., and Sandelius, A. S., 1988, Phosphatidylinositol and phosphatidylinositol phosphate kinases in plant plasma membranes, Biochim. Biophys. Acta 958:268–278.Google Scholar
  110. Strasser, H., Hoffman, C., Grisebach, H., and Matern, U., 1986, Are polyphosphoinositides induced in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells?, Z. Naturforsch. 41:717–724.Google Scholar
  111. Tate, B. F., Schaller, G. E., Sussman, M. R., and Crain, R. C., 1989, Characterization of polyphosphoinositide phospholipase C from plasma membrane of Avena sativa, Plant Physiol. 91:1275–1279.PubMedGoogle Scholar
  112. Tretyn, A., Kendrick, R. E., and Wagner, G., 1991, The role(s) of calcium ions in phytochrome action, Photochem. Photobiol. 53:1135–1156.Google Scholar
  113. Wagh, S. S., and Natarajan, V., 1990, Phosphoinositide metabolism and calcium mobilization in plants, in Proceedings of the International Congress on Plant Physiology (S. K. Sinha, P. V. Sane, S. C. Bhargava, and P. K. Agarwal, eds.), pp. 680–687, Society for Plant Physiology and Biochemistry, New Delhi.Google Scholar
  114. Warpeha, K.M.F., Hamm, H. E., Rasenick, M. M., and Kaufman, L. S., 1991, A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas, Proc. Natl. Acad. Sci. USA 88:8925–8929.PubMedGoogle Scholar
  115. Wheeler, J. J., and Boss, W. F., 1987, Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells, Plant Physiol. 85:389–392.PubMedGoogle Scholar
  116. Wheeler, J. J., and Boss, W. F., 1990, Inositol lysophospholipids in inositide metabolism in plants, in Inositol Metabolism in Plants (D. J. Morre, W. F. Boss, and F. A. Loewus, eds.), pp. 163–172, Wiley-Liss, New York.Google Scholar
  117. Zocchi, G., 1990, Comparison of the effect of indoleacetic acid and fusicoccin on the breakdown of phosphatidylinositol in maize coleoptiles, Plant Physiol. 94:1009–1011.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Sudhir K. Sopory
    • 1
  • Meena R. Chandok
    • 1
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations