Skip to main content

Metabolism of myo-Inositol Phosphates and the Alternative Pathway in Generation of myo-Inositol Trisphosphate Involved in Calcium Mobilization in Plants

  • Chapter
myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction

Part of the book series: Subcellular Biochemistry ((SCBI,volume 26))

Abstract

The myo-inositol polyphosphates and their role in cellular metabolism and signal transduction processes in plants have now attracted the attention of scientists in growing numbers. Phytic acid, myo-inositol-1,2,3,4,5,6-hexakisphosphate has long been known as the storage form of phosphorus in seeds (see Cosgrove, 1980). The calcium and magnesium salt of phytic acid is also known as phytin. Of the total phosphorus, 50–80% has been found to be associated with phytin in different seeds. Although the composition of phytic acid has been known for more than 100 years, many problems concerning its metabolism and functions are not fully solved (see Loewus and Loewus, 1983; B. Biswas et al., 1984; Raboy, 1990; Drøbak, 1992). What is apparent is that plant cells representing different tissue types synthesize phytic acid both to sequester phosphorus and also to chelate different metallic cations such as Ca2+ and others. Several reviews have dealt with the occurrence, chemistry, and nutritional implications of phytates in legumes and cereals (see Reddy et al., 1982; B. Biswas et al., 1984). Phytate in general rapidly accumulates during the development of seeds and disappears during germination of seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre, J., Lassalles, J. P., and Kado, R. T., 1990, Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate, Nature 343:567–570.

    CAS  Google Scholar 

  • Anderson, J. M., 1989, Membrane derived fatty acids as precursors to second messengers, in Second Messengers in Plant Growth and Development (W. F. Boss and D. J. Moore, eds.), pp. 289–303, Alan R. Liss, New York.

    Google Scholar 

  • Arino, J., 1993, Protein phosphatases in higher plants: Multiplicity of type 2A phosphatases in Arabidopsis thaliana, Plant Mol. Biol. 21:475–485.

    PubMed  CAS  Google Scholar 

  • Assmann, S. M., 1993, Signal transduction in guard cells, Annu. Rev. Cell Biol. 9:345–375.

    PubMed  CAS  Google Scholar 

  • Barrientes, L., Scott, J. J., and Murthy, P.P.N., 1994, Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen, Plant Physiol. 106:1489–1495.

    Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.

    PubMed  CAS  Google Scholar 

  • Birnbaumer, L., 1992, Receptor-to-effector signaling through G-proteins: Roles for βγ dimers as well as α-subunits, Cell 71:1069–1072.

    PubMed  CAS  Google Scholar 

  • Biswas, B. B., Biswas, S., Chakraborti, S., and De, B. P., 1978, A novel metabolic cycle involving myoinositol phosphates during formation and germination of seeds, in Cyclitols and Phospho-inositides (W. W. Wells and Y. Eisenberg, Jr., eds.), pp. 57–58, Academic Press, New York.

    Google Scholar 

  • Biswas, B. B., Ghosh, B., and Mazumder, A. L., 1984, Myoinositol polyphosphates and their role in cellular metabolism: A proposed cycle involving glucose-6-phosphate and myo-inositol phosphates, Subcell. Biochem. 10:237–280.

    PubMed  CAS  Google Scholar 

  • Biswas, S., and Biswas, B. B., 1965, Enzymatic synthesis of guanosine triphosphate from phytin and guanosine diphosphate, Biochim. Biophys. Acta 108:710–713.

    PubMed  CAS  Google Scholar 

  • Biswas, S., and Biswas, B. B., 1994, Myoinositol phosphates as implicated in metabolic and signal transduction processes in plants, Ind. J. Chem. 71:495–499.

    CAS  Google Scholar 

  • Biswas, S., and Bose, D. M., 1972, An ATPase from Mimosa pudica L. Arch. Biochem. Biophys. 148:199–207.

    PubMed  CAS  Google Scholar 

  • Biswas, S., Burman, S., and Biswas, B. B., 1975, Inositol hexaphosphate guanosine diphosphate phosphotransferase from Phaseolus aureus, Phytochemistry 14:373–375.

    CAS  Google Scholar 

  • Biswas, S., Maity, I. B., Chakraborti, S., and Biswas, B. B., 1978, Purification and characterization of myoinositol hexaphosphate adenosine diphosphate phosphotransferase from Phaseolus aureus, Arch. Biochem. Biophys. 185:557–566.

    PubMed  CAS  Google Scholar 

  • Biswas, S., Dalal, B., Sen, M., and Biswas, B. B., 1995, Receptor for myo-inositol trisphosphate from microsomal fraction of Vigna radiata, Biochem. J. 306:631–636.

    PubMed  CAS  Google Scholar 

  • Blackford, S., 1990, Voltage sensitivity of H+/Ca2+ antiport in higher plant tonoplast suggests a role in vacuolar Ca2+ accumulation, J. Biol. Chem. 265:1617–1620.

    Google Scholar 

  • Blatt, M. R., Thiel, G., and Trentham, D. R., 1990, Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate, Nature 346:766–768.

    PubMed  CAS  Google Scholar 

  • Blowers, D. P., and Trewavas, A. J., 1989, Second messengers: Their existence and relationship to protein kinases, in Second Messengers in Plant Growth and Development (W. F. Boss and D. J. Moore, eds.), pp. 298–303, Alan R. Liss, New York.

    Google Scholar 

  • Boltman, O., Strother, S., and Hoffman-Ostenhof, O., 1980, The enzymes involved in the synthesis of phytic acid in Lemna gibba, Mol. Cell Biol. 30:171–175.

    Google Scholar 

  • Boss, W. F., and Massel, M. O., 1985, Polyphosphoinositides are present in plant tissue culture cells, Biochem. Biophys. Res. Commun. 132:1018–1023.

    PubMed  CAS  Google Scholar 

  • Bowler, C., and Chua, N.-H., 1994, Emerging themes of plant signal transduction, Plant Cell 6:1529–1541.

    PubMed  CAS  Google Scholar 

  • Brearly, C. A., and Honke, D. E., 1992, 3-and 4-phosphorylated phosphatidyl inositols in the aquatic plant Spirodela polyrhiza L., Biochem. J. 283:247–255.

    Google Scholar 

  • Brosnan, J. M., and Sanders, D., 1990, Inositol trisphosphate mediated calcium release in beet microsomes is inhibited by heparin, FEBS Lett. 260:70–72.

    CAS  Google Scholar 

  • Brosnan, J. M., and Sanders, D., 1993, Identification and characterization of high affinity binding sites for inositol trisphosphate in red beet, Plant Cell 5:931–940.

    PubMed  CAS  Google Scholar 

  • Bush, D. S., 1993, Regulation of cytosolic calcium in plants, Plant Physiol. 103:7–13.

    PubMed  CAS  Google Scholar 

  • Bush, D. S., and Jones, R. L., 1990, Measuring intracellular calcium levels in plant cells using the fluorescent probes indo-1 and fura-2, Plant Physiol. 93:841–845.

    PubMed  CAS  Google Scholar 

  • Canut, H., Carrasco, A., Graziana, A., Boudet, A. M., and Ranjeva, R., 1989, Inositol trisphosphate stimulated calcium release from Acer microsomal fractions involves the uptake of potassium, FEBS Lett. 253:173–177.

    CAS  Google Scholar 

  • Carter, P. J., Nimmo, H. G., Fewson, C. A., and Wilkins, M. B., 1991, Circadian rhythms in the activity of plant protein kinase, EMBO J. 10:2063–2066.

    PubMed  CAS  Google Scholar 

  • Chadwick, C. C., Saito, A., and Fleischer, S., 1990, Isolation and characterization of the inositol trisphosphate receptor from smooth muscle, Proc. Natl. Acad. Sci. USA 87:2132–2136.

    PubMed  CAS  Google Scholar 

  • Chakraborti, S., and Biswas, B. B., 1981b, Evidence for the existence of a phosphoinositol kinase in chicken erythrocytes, Indian J. Biochem. Biophys. 18:398–402.

    Google Scholar 

  • Chakraborti, S., and Biswas, B. B., 1981, Two forms of phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 20:1815–1817.

    Google Scholar 

  • Challis, J., Willcocks, A. L., Mulloy, B., Potter, B. V., and Nahorski, S. R., 1991, Characterization of inositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate binding sites in rat cerebellum, Biochem. J. 274:861–867.

    Google Scholar 

  • Chang, C., Blecker, A. B., Kwok, S. F., and Meyerowitz, E. M., 1992, Molecular cloning approach for a putative receptor gene in Arabidopsis, Biochem. Soc. Trans. 20:73–75.

    PubMed  CAS  Google Scholar 

  • Chen, I. W., and Charalampous, F. C., 1966, Biochemical studies on D-inositol 1-phosphate as intermediate in the biosynthesis of inositol from glucose 6-phosphate and characteristics of two reactions in this biosynthesis, J. Biol. Chem. 241:2194–2199.

    PubMed  CAS  Google Scholar 

  • Choi, K.-Y., Satterberg, B., Lyons, D. M., and Elion, E. A., 1994, Ste 5 tethers multiple protein kinases in MAP kinase cascade required for mating in S. cerevisiae, Cell 78:499–512.

    PubMed  CAS  Google Scholar 

  • Cohen, P., 1989, The structure and regulation of protein phosphatases, Annu. Rev. Biochem. 58:453–508.

    PubMed  CAS  Google Scholar 

  • Cohen, P., 1992, Signal integration at the level of protein kinases, protein phosphatases and their substrates, Trends Biochem. Sci. 17:408–413.

    PubMed  CAS  Google Scholar 

  • Colasanti, J., Tyers, M., and Sundaresan, V., 1991, Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays, Proc. Natl. Acad. Sci. USA 88:3377–3381.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D. J., 1966, The chemistry and biochemistry of inositol polyphosphates, Rev. Pure Appl. Chem. 16:209–224.

    CAS  Google Scholar 

  • Cosgrove, D. J., 1980, Studies in Organic Chemistry 4: Inositol Phosphates: Their Chemistry, Biochemistry and Physiology, Elsevier, Amsterdam.

    Google Scholar 

  • Cosgrove, D. J., and Hedrich, R., 1991, Stretch activated chloride, potassium and calcium channels coexisting in plasma membranes of guard cells of Vicea faba, Planta 186:143–153.

    PubMed  CAS  Google Scholar 

  • Cote, G. G., and Crain, R. C., 1993, Biochemistry of phosphoinositides, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:333–356.

    CAS  Google Scholar 

  • Craxton, A., Erneux, C., and Shears, S. B., 1994, Inositol 1,4,5,6-tetrakisphosphate is phosphory-lated in rat liver by a 3-kinase that is distinct from inositol 1,4,5-trisphosphate 3-kinase, J. Biol. Chem. 269:4337–4342.

    PubMed  CAS  Google Scholar 

  • Dasgupta, S., Dasgupta, D., Sen, M., Biswas, S., and Biswas B. B., 1996, Myoinositol phosphates induced conformational change in phytase in interacting with the receptor for calcium mobilization from microsomal fraction, Biochemistry (in press).

    Google Scholar 

  • Davies, E., 1987, Plant responses to wounding, in The Biochemistry of Plants (P. K. Stumf, ed.), pp. 143–164, Academic Press, New York.

    Google Scholar 

  • De, B. P., and Biswas, B. B., 1979, Evidence for the existence of a novel dehydrogenase in Phaseolus aureus, J. Biol. Chem. 254:8717–8719.

    PubMed  CAS  Google Scholar 

  • Dietzel, C., and Kurjan, J., 1987, The yeast SCG1 gene: A Ga-like protein implicated in the a and α factor response pathway, Cell 50:1001–1010.

    PubMed  CAS  Google Scholar 

  • Drøbak, B. K., 1992, The plant phosphoinositide system, Biochem. J. 288:679–712.

    Google Scholar 

  • Drøbak, B. K., 1993, Plant phosphoinositides and intracellular signalling, Plant Physiol. 102:705–709.

    PubMed  Google Scholar 

  • Drøbak, B. K., Allan, E. F., Comerford, J. G., Roberts, R., and Dawson, A. P., 1988, Presence of guanine nucleotide-binding proteins in a plant hypocotyl fraction, Biochem. Biophys. Res. Commun. 150:899–903.

    PubMed  Google Scholar 

  • Edelman, A. M., Blumenthal, D. K., and Krebs, E. G., 1987, Protein serine /threonine kinases, Annu. Rev. Biochem. 56:567–613.

    PubMed  CAS  Google Scholar 

  • Estevez, F., Paulford, D., Stark, M.J.R., Crater, A. N. and Downes, C. P., 1994, Inositoltrisphos-phate metabolism in Saccharomyces cerevisiae: identification, purification and properties of inositol 1,4,5-tris phosphate 6-kinase, Biochem. J. 302:709–716.

    PubMed  CAS  Google Scholar 

  • Fallon, K. M., Shacklock, P. S., and Trewavas, A. J., 1993, Detection in vivo of very rapid red light-induced calcium-sensitive protein phosphorylation in etiolated wheat (Tritecum aestivum) leaf protoplasts, Plant Physiol. 101:1039–1945.

    PubMed  CAS  Google Scholar 

  • Farmer, E. E., and Ryan, C. A., 1992, Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors, Plant Cell 4:129–134.

    PubMed  CAS  Google Scholar 

  • Felix, G., FrossKopf, G., Regengass, M., and Boller, T., 1991, Rapid changes of protein phosphorylation are involved in transduction of the elicitor in plant cells, Proc. Natl. Acad. Sci. USA 88:8831–8834.

    PubMed  CAS  Google Scholar 

  • Felix, G., Regengass, M., Sapanu, P., and Boller, T., 1994. The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and reduces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [32p] phosphate, Proc. Natl. Acad. Sci. USA 91:952–956.

    PubMed  CAS  Google Scholar 

  • Ferris, C. D., and Snyder, S. H., 1992, Inositol 1,4,5-trisphosphate activated Ca2+ channels, Annu. Rev. Physiol. 54:469–488.

    PubMed  CAS  Google Scholar 

  • Firtel, R. A., van Haastert, P.J.M., Kimmel, A. R., and Devreotes, P. N., 1989, G protein linked signal transduction pathways in development: Dictyostelium as an experimental system. Cell 58:235–239.

    PubMed  CAS  Google Scholar 

  • Gehring, C.A., Irving, H. R., and Paris, R. W., 1990, Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells, Proc. Natl. Acad. Sci. USA 87:9645–9649.

    PubMed  CAS  Google Scholar 

  • Ghosh, B., De, B. P., and Biswas, B. B., 1984, Purification and properties of myoinositol-1-phosphate dehydrogenase from germinating mung bean seeds, Arch. Biochem. Biophys. 228:309–319.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1987, G proteins: Transducers of receptor generated signals, Annu. Rev. Biochem. 56:615–649.

    PubMed  CAS  Google Scholar 

  • Gilroy, S., and Trewavas, T., 1994, A decade of plant signals, BioEssays 16:677–682.

    Google Scholar 

  • Gilroy, S., Read, N. D., and Trewavas, A. J., 1990, Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure, Nature 346:769–771.

    PubMed  CAS  Google Scholar 

  • Gilroy, S., Bethke, P. C., and Jones, R. L., 1993, Calcium homeostasis in plants, J. Cell Sci. 106:453–462.

    PubMed  CAS  Google Scholar 

  • Gupta, S., Gallego, C., and Johnson, G., 1992, Mitogenic pathways regulated by G-protein oncogenes, Mol. Biol. Cell 3:123–128.

    PubMed  CAS  Google Scholar 

  • Hadwiger, J. A., and Firtel, R. A., 1992, Analysis of Ga4, a G-protein subunit required for multicellular development in Dictyostelium. Genes Dev. 6:38–49.

    PubMed  CAS  Google Scholar 

  • Hall, A., 1990, ras and GAP—Who’s controlling whom, Cell 61:921–923.

    PubMed  CAS  Google Scholar 

  • Hardie, D. G., 1990, Roles of protein kinases and phosphatases in signal transduction, Symp. Soc. Exp. Biol. 44:241–255.

    PubMed  CAS  Google Scholar 

  • Harper, J. F., Sussman, M. R., Schaller, G. E., Putman-Evans, C., and Charboulav, H., 1991, A calcium dependent protein kinase with a regulatory domain similar to calmodulin, Science 252:951–954.

    PubMed  CAS  Google Scholar 

  • Harwood, J. L., 1980, Lipids: Structure and function, in The Biochemistry of Plants, Vol. 4 (P. K. Stumf, ed.), pp. 1–55. Academic Press, New York.

    Google Scholar 

  • Helen, M., and Goldsmith, M., 1993, Cellular signalling: New insights into the action of the plant growth hormone auxin, Proc. Natl. Acad. Sci. USA 90:11442–11445.

    Google Scholar 

  • Hepler, K. P., and Wayne, R. O., 1985, Calcium and plant development, Annu. Rev. Plant Physiol. 36:397–439.

    CAS  Google Scholar 

  • Hetherington, A. M., and Trewavas, A., 1984, Activation of pea membrane protein kinase by calcium ions, Planta 161:409–417.

    CAS  Google Scholar 

  • Hildmann, T., Ebneth, M., Pena-Cortes, H., Sanchez-Serrano, J. J., Willmitzer, L., and Prat, S., 1992, General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding, Plant Cell 4:1157–1170.

    PubMed  CAS  Google Scholar 

  • Hirayama, T., Ohto, C., Mizoguchi, T., and Shinozaki, K., 1995, A gene encoding a phospha-tidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana, Proc. Natl. Acad. Sci., USA 92:3903–3907.

    PubMed  CAS  Google Scholar 

  • Hunter, T., and Cooper, J. A. 1985, Protein-tyrosine kinases, Annu. Rev. Biochem. 54:897–930.

    PubMed  CAS  Google Scholar 

  • Igaue, I., Shimizu, S., and Miyauchi, S., 1980, Formation of a series of myo-inositol phosphates during growth of rice plant cells in suspension culture, Plant Cell Physiol. 21:351–356.

    CAS  Google Scholar 

  • Igaue, I., Miyauchi, S., and Saito, K., 1982, Formation of myoinositol phosphates in a rice cell suspension culture, in Proceedings Fifth International Congress on Plant Tissue Cell Culture, pp. 265–266, Tokyo.

    Google Scholar 

  • Irvine, R. F., 1990, Quantal Ca2+ release and control of Ca2+ entry by inositol phosphates—a possible mechanism, FEBS Lett. 263:5–9.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., 1992, Inositol phosphates and Ca2+ entry: Toward a proliferation or a simplification, FASEB J. 6:3085–3091.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., and Dowson, R.M.S., 1980, Phosphatidyl inositol phosphodiesterase in higher plants, Biochem. J. 192:279–283.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., Drobak, B. K., and Dowson, A. P., 1989, Phospho-tidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues, Plant Physiol. 89:888–892.

    PubMed  CAS  Google Scholar 

  • Isshiki, T., Mochizuki, N., Maeda, T., and Yamamoto, M., 1992, Characterization of a fission yeast gene GAP2 that encodes a Ga subunit involved in the monitoring of nutrition, Genes Dev. 6:2455–2462.

    PubMed  CAS  Google Scholar 

  • Johannes, E., Brosman, J. M., and Sanders, D., 1991, Calcium channels and signal transduction in plant cells, BioEssays 13:331–336.

    Google Scholar 

  • Johannes, E., Brosman, J. M., and Sanders, D., 1992, Parallel pathways for intracellular Ca2+ release from the vacuole of higher plants, Plant J. 2:97–102.

    CAS  Google Scholar 

  • Kalinoski, D. L., Aldinger, S. B., Boyle, A. G., Huque, T., Marecek, J. F., Prestwich, G. D., and Diego, R., 1992, Characterization of a novel inositol 1,4,5-trisphoshate receptor in isolated alfactory cilia, Biochem. J. 281:449–456.

    PubMed  CAS  Google Scholar 

  • Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., and Ecker, J. R., 1993, CTR1, a negative regulator of the ethylene response pathway in Arabidopsis encodes a member of the Raf family of protein kinases, Cell 72:427–441.

    PubMed  CAS  Google Scholar 

  • Kim, N. Y., Cote, G. G., and Crain, R. C., 1992, Effects of light on the membrane potential of photoplasts from Samanea saman pulvini: Involvement of K+ channel and H+ ATPase, Plant Physiol. 99:1532–1539.

    PubMed  CAS  Google Scholar 

  • Kim, H. Y., Cote, G. G., and Crain, R. E., 1993, Potassium channels in Samanea saman protoplasts by phytochrome and the biological clock, Science 260:960–962.

    PubMed  CAS  Google Scholar 

  • Kinnard, R. L., Narsimhan, B., Pliskas Malyshak, G., and Murthy, P.P.N., 1995, Characterization of scylloinositol containing phosphotidyl inositol in plant Cells, Biochem. Biophys. Res. Commun., 210:549–553.

    PubMed  CAS  Google Scholar 

  • Knight, M. R., Campbell, A. K., Smith, S. M., and Trewavas, A. J., 1991, Transgenic plant acquarin reports the effects of touch and cold shock and elicitors on cytoplasmic calcium, Nature 352:524–526.

    PubMed  CAS  Google Scholar 

  • Knight, M. R., Smith, S. M., and Trewavas, A. J., 1992, Wind induced plant motion immediately increases cytosolic calcium, Proc. Natl. Acad. Sci. USA 89:4967–4971.

    PubMed  CAS  Google Scholar 

  • Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation-dephosphorylation of enzymes, Annu. Rev. Biochem. 48:923–959.

    PubMed  CAS  Google Scholar 

  • Lam, E., 1993, Heterotrimeric guanine nucleotide binding proteins and light responses in higher plants, in Plant Signals in Interacting with Other Organisms (J. K. Schultz and I. Raskin, eds.), pp. 7–13, American Society for Plant Physiology Baltimore, Maryland.

    Google Scholar 

  • Lamb, C. J., 1994, Plant disease resistance genes in signal perception and transduction, Cell 76:419–422.

    PubMed  CAS  Google Scholar 

  • Lamb, C. J., Ryals, J. A., Ward, E. R., and Dixon, R. A., 1992, Emerging strategies for enhancing crop resistance to microbial pathogens, Biotechnology 10:1436–1445.

    PubMed  CAS  Google Scholar 

  • Lehle, I., 1990, Phosphatidyl inositol mechanism and its role in signal transduction in growing plants, Plant Mol. Biol. 15:647–658.

    PubMed  CAS  Google Scholar 

  • Leung, J., Bouvier-Durand, M., Marris, P. C., Querrier, D., Chefdar, F., and Giraudat, J., 1994, Arabidopsis ABA response gene ABI 1: Features of a calcium-modulated protein phosphatases, Science 264:1448–1452.

    PubMed  CAS  Google Scholar 

  • Li, H., Dauwalder, M., and Roux, S. J., 1991, Partial purification and characterization of a Ca2+ dependent protein kinase from pea nuclei, Plant Physiol. 96:720–727.

    PubMed  CAS  Google Scholar 

  • Lijima, T., and Sibaoka, T., 1985, Membrane potentials in excitable cells of Aldrovanda vesiculosa trap lobes, Plant Cell Physiol. 26:1–13.

    Google Scholar 

  • Lim, P. E., and Tate, M. E., 1973, The phytases II: Properties of phytase fraction F1 and F2 from wheat bran and myoinositol phosphates produced by fraction F2, Biochim. Biophys. Acta 302:316–328.

    PubMed  CAS  Google Scholar 

  • Loewus, F. A., and Loewus, M. W., 1983, Myoinositol: Its biosynthesis and metabolism, Annu. Rev. Plant Physiol. 34:137–161.

    CAS  Google Scholar 

  • Loewus, F. A., Everard, J. D., and Young, K. A., 1990, Inositol metabolism: Precursor role and breakdown, in Inositol Metabolism in Plants (D. J. Moore, W. F. Boss, and F. A. Loewus, eds.), pp. 21–45, Wiley-Liss, New York.

    Google Scholar 

  • Loewus, M. W., Sasaki, K., Leavitt, A. L., Munsell, L., Sherman, W. R., and Loewus, F. A., 1982, The enantiomeric form of myoinositol-1-phosphate produced by myo-inositol 1-phosphate synthase and myoinositol kinase in higher plants, Plant Physiol. 70:1661–1663.

    PubMed  CAS  Google Scholar 

  • Ma, H., 1993, Protein phosphorylation in plants: Enzymes, substrates and regulators, Trends Genet. 9:228–230.

    PubMed  CAS  Google Scholar 

  • Ma, H., Yanofski, M. F., and Meyerowitz, E. M., 1990, Molecular cloning and characterization of GPA 1, a G protein α-subunit gene from Arabidopsis thaliana, Proc. Natl Acad. Sci. USA 87:3821–3825.

    PubMed  CAS  Google Scholar 

  • Ma, H., Yanofski, M. F., and Huang, H., 1991, Isolation and sequence analysis of TGA 1 cDNAs encoding a tomato G protein a subunit, Gene 107:189–195.

    PubMed  CAS  Google Scholar 

  • Mackintosh, R. W., Haycox, G., Hardie, G., and Cohen, P.T.W., 1990, Identification by molecular cloning of two cDNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatases-1 and 2A, FEBS Lett. 276:156–160.

    PubMed  CAS  Google Scholar 

  • Mackintosh, C., Coggins, J., and Cohen, P., 1991, Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase, Biochem. J. 273:733–738.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Niinobe, M., and Mikoshiba, K., 1990, A cerebellar purkinje cells marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex, EMBO J. 9:61–67.

    PubMed  CAS  Google Scholar 

  • Maitra, R., Samanta, S., Mukherjee, M., Biswas, S., and Biswas, B. B., 1988, Isolation characterization and biological function of myoinositol trisphosphate generated by phytase action on myoinositol hexaphosphate, Ind. J. Biochem. Biophys. 25:655–659.

    CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Bansal, V. S., Inhorn, R. C., Ross, T. S., and Lips, D. L., 1988, Inositol phosphates: Synthesis and degradation, J. Biol. Chem. 263:3051–3054.

    PubMed  CAS  Google Scholar 

  • Malhotra, K., Kim, Sang-Tae, Batschauer, A., Dawat, L., and Sancar, A., 1995, Putative blue light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity, Biochem. 34:6892–6899.

    CAS  Google Scholar 

  • Mansfield, T. A., Hetherington, A. M., and Atkinson, C. J., 1990, Some current aspects of stomatal physiology, Plant Mol. Biol. 41:55–75.

    CAS  Google Scholar 

  • Mason, H. S., De Wald, D. B., Creelman, R. A., and Mullet, J. E., 1992, Coregulation of soyabean vegetative storage protein gene expression by methyl jasmonate and soluble sugars, Plant Physiol. 98:859–867.

    PubMed  CAS  Google Scholar 

  • McAinsh, M. R., Brownlee, C., and Hetherington, A. M., 1990, Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure, Nature 343:186–188.

    CAS  Google Scholar 

  • McAinsh, M. R., Brownlee, C., and Hetherington, A. M., 1992, Visualizing changes in cytosolic free Ca2+ during the response of stomatal guard cells to abscisic acid, Plant Cell 4:113–122.

    Google Scholar 

  • McMurray, W. C., and Irvine, R. F., 1985, Phosphatidyl 4,5-bisphosphate phosphodiesterase in higher plants, Biochem. J. 249:877–881.

    Google Scholar 

  • Melin, P. M., Sommarin, M., Sandelius, A. S., and Jergil, B., 1987, Identification of calcium stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes, FEBS Lett. 223:87–91.

    PubMed  CAS  Google Scholar 

  • Meyer, A., Miersch, O., Buttner, C., Dathe, W., and Sembdner, G., 1984, Occurrence of the plant growth regulator jasmonic acid in plants, J. Plant Growth Regul. 3:1–8.

    CAS  Google Scholar 

  • Meyer, K., Leube, M. P., and Grill, E., 1994, A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana, Science 264:1452–1455.

    PubMed  CAS  Google Scholar 

  • Mikoshiba, K., 1993, Inositol 1,4,5-trisphosphate receptor, Trends Pharmacol. Sci. 14:86–89.

    PubMed  CAS  Google Scholar 

  • Moore, T. S., 1982, Phospholipid biosynthesis, Annu. Rev. Plant Physiol. 33:235–259.

    CAS  Google Scholar 

  • Moore, T. S., 1990, Biosynthesis of phosphatidyl inositol, in Inositol Metabolism in Plants (D. J. Moore, W. F. Boss, and F. Loewus, eds.), pp. 107–112, Wiley-Liss, New York.

    Google Scholar 

  • Morse, M. J., Crain, R. C., and Satter, R. L., 1987, Light stimulated inositol phospholipid turnover in Samanea saman leaf pulvini, Proc. Natl. Acad. Sci. USA 84:7075–7078.

    PubMed  CAS  Google Scholar 

  • Moysset, L., and Simon, E., 1989, Role of calcium in phytochrome controlled nystinastic movement of Albizzia laphantha leaflets, Plant Physiol. 90:1108–1114.

    PubMed  CAS  Google Scholar 

  • Mukherjee, J., and Biswas, S., 1980, Purification and characterization of a nucleoside trisphos-phatase from Mimosa pudica, Ind. J. Biochem. Biophys. 17:452–456.

    CAS  Google Scholar 

  • Obara, T., Nakafuku, M., Yamamoto, M., and Kaziro, Y., 1991, Isolation and characterization of a gene encoding a G protein α-subunit from Schizosaccharomyces pombe: Involvement in mating and sporulation pathways, Proc. Natl. Acad. Sci. USA 88:5877–5881.

    PubMed  CAS  Google Scholar 

  • Palme, K., 1992, Molecular analysis of plant signaling elements: Relevance of eukaryotic signal transduction models, Int. Rev. Cytol. 132:223–283.

    PubMed  CAS  Google Scholar 

  • Parks, S., and Weischau, E., 1991, The Drosophila gastrulation gene concertina encodes a G α-like protein, Cell 64:447–458.

    PubMed  CAS  Google Scholar 

  • Pentoja, O., Gilli, A., and Blumwald, E., 1992, Voltage dependent Ca2+ channels in plant vacuoles, Science 255:1567–1569.

    Google Scholar 

  • Pfaffmann, H., Hartman, E., Brightman, A. O., and Moore, D. J., 1987, Phosphatidyl inositol specific phospholipase C of plant stems, Plant Physiol. 85:1151–1155.

    PubMed  CAS  Google Scholar 

  • Phillippy, B. Q., and Bland, J. M., 1988, Gradient ion chromotography of inositol phosphates, Anal. Biochem. 175:162–166.

    PubMed  CAS  Google Scholar 

  • Phillippy, B. Q., Ulah, A.H.J., and Ehrlich, K. C., 1994, Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds, J. Biol. Chem. 269:28393–28399.

    PubMed  CAS  Google Scholar 

  • Pickard, B., 1973, Action potentials in higher plants, Bot. Rev. 39:172–201.

    Google Scholar 

  • Poly a, G. M., Nott, R., Klucis, E. M., and Chandra, S., 1990, Inhibition of plant Ca2+ dependent protein kinase by basic polypeptides, Biochim. Biophys. Acta 1037:259–262.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B.W., and Reddy, A.S.N., 1987, Calcium messenger system in plants, CRC Crit. Rev. Plant Sci. 6:47–103.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B.W., and Reddy, A.S.N., 1993, Calcium and signal transduction in plants, CRC Crit. Rev. Plant Sci. 12:185–211.

    PubMed  CAS  Google Scholar 

  • Putman-Evanans, C. L., Harmon, A. C., and Cormier, M. J., 1990, Purification and characterization of a novel Ca2+ dependent protein kinase from soybean, Biochem. J. 29:2488–2495.

    Google Scholar 

  • Raboy, V., 1990, Biochemistry and genetics of phytic acid synthesis, in Inositol Metabolism in Plants (D. J. Moore, W. F. Boss, and F. A. Loewus, eds.), pp. 55–76, Wiley-Liss, New York.

    Google Scholar 

  • Raha, S., Giri, B. B., Bhattacharya, B., and Biswas, B. B., 1995, Inositol (1,3,4,5) tetrakisphos-phate has an important role in calcium mobilization from Entamoeba histolytica, FEBS Lett. 362:316–318.

    PubMed  CAS  Google Scholar 

  • Raj, V., and Fluhr, R., 1992, Calcium requirement for ethylene dependent responses, Plant Cell 4:1123–1130.

    Google Scholar 

  • Raj, V., and Fluhr, R., 1993, Ethylene signal is transduced via protein phosphorylation events in plant cells, Plant Cell 5:523–530.

    Google Scholar 

  • Rajendran, S., and Prakash, V., 1993, Interaction of myoinositol hexaphosphate with β-globulin from Sesamum indicum, Int. J. Peptide Res. 42: 78–83.

    CAS  Google Scholar 

  • Ranjeva, R., and Boudet, A. M., 1987, Phosphorylation of proteins in plants: Regulatory effects and potential involvement in stimulus/response coupling, Annu. Rev. Plant Physiol. 38:73–93.

    CAS  Google Scholar 

  • Ranjeva, R., Carrasco, A., and Boudet, A. M., 1988, Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells, FEBS Lett. 230:137–141.

    CAS  Google Scholar 

  • Reddy, N. R., Sathe, S. K., and Salunkhe, D. K., 1982, Phytates in legumes and cereals, Adv. Food Res. 28:1–92.

    PubMed  CAS  Google Scholar 

  • Roberts, D. M., and Harmon, A. C., 1992, Calcium modulated proteins: Targets of intracellular calcium signals in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:375–414.

    CAS  Google Scholar 

  • Roberts, D. M., Lukas, T. J., and Watterson, D. M., 1986, Structure function and mechanism of action of calmodulin, CRC Crit. Rev. Plant Sci. 4:311–321.

    CAS  Google Scholar 

  • Ross, C. A., Meldolesi, J., Milner, T. A., Satosh, T., Supattapone, S., and Snyder, S. H., 1989, Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar purkinje neurons, Nature 339:468–470.

    PubMed  CAS  Google Scholar 

  • Samanta, S., Dalai, B., Biswas, S., and Biswas, B. B., 1993, Myoinositol trisphosphate phytase complex as an elicitor in calcium mobilization in plants, Biochem. Biophys. Res. Commun. 191:427–434.

    PubMed  CAS  Google Scholar 

  • Samuelson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A., and Serhan, C. N., 1987, Leuko-trienes and lipoxins: Structures, biosynthesis and biological effects, Science 237:1171–1175.

    Google Scholar 

  • Sandelius, A. S., and Sommarin, M., 1986, Phosphorylation of phosphatidyl inositol in isolated plant membranes, FEBS Lett. 201:282–286.

    CAS  Google Scholar 

  • Sandelius, A. S., and Sommarin, M., 1988, Phosphatidyl inositol and phosphatidyl inositol phosphate kinases in plant plasma membranes, Biochim. Biophys. Acta 958:268–278.

    Google Scholar 

  • Scheel, D., Colling, C., Hedrich, R., Kawalleck, P., Parker, J. E., Sacks, W. R., Somssich, I. E., and Hahlbrock, K., 1991, Signals in plant defence gene activation, in Advances in Molecular Gene Plant-Microbial Interaction, Vol. 1 (H. Hennecke and D.P.S. Verma, eds.), pp. 373–380, Lu wen, Dordrecht.

    Google Scholar 

  • Scheuerlein, R., Schmidt, K., Poenie, M., and Roux, S. J., 1991, Determination of cytoplasmic calcium concentration in Dryopteris spores, Planta 184:166–171.

    PubMed  CAS  Google Scholar 

  • Schroeder, J. I., and Hagiwara, S., 1990, Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of non selective Ca2+ permeable channels, Proc. Natl. Acad. Sci. USA 87:9305–9309.

    PubMed  CAS  Google Scholar 

  • Schroeder, J. I., and Thuleau, P., 1991, Ca2+ channels in higher plants cells, Plant Cell 3:555–559.

    PubMed  CAS  Google Scholar 

  • Schumaker, K. S., and Szi, H., 1987, Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots, J. Biol. Chem. 262:3944–3946.

    PubMed  CAS  Google Scholar 

  • Scott, J. J., and Loewus, F. A., 1986, A calcium activated phytase from Lilium longiflorwn, Plant Physiol. 82:330–335.

    Google Scholar 

  • Short, T. W., Reymond, P., and Briggs, W. R., 1993, A pea plasma membrane protein exhibiting blue light induced phosphorylation retains photosensitivity following Triton solubilization, Plant Physiol. 101:647–655.

    PubMed  CAS  Google Scholar 

  • Shimazaki, K-I., Kinoshita, T., and Nishimura, M., 1992, Involvement of calmodulin and calmodulin-dependent myosin light chain kinase in blue light dependent H+ pumping by guard cell protoplasts from Vicia faba L., Plant Physiol. 99:1416–1421.

    PubMed  CAS  Google Scholar 

  • Simon, M. I., Strathmann, M. P., and Gautam, N., 1991, Diversity of G proteins in signal transduction, Science 252:802–808.

    PubMed  CAS  Google Scholar 

  • Sistrunk, M. L., Antosiewicz, D. M., Purugganan, M. M., and Braan, J., 1994, Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue specific regulation, Plant Cell 6:1553–1565.

    PubMed  CAS  Google Scholar 

  • Smith, R. D., and Walker, J. C., 1993, Expression of multiple type 1 phosphatases in Arabidopsis thaliana, Plant Mol. Biol. 21:307–316.

    PubMed  CAS  Google Scholar 

  • Sounders, M. J., and Helper, P. K., 1983, Calcium antagonists and calmodulin inhibitors block cytokinin induced bud formation in Funaria, Dev. Biol. 99:41–49.

    Google Scholar 

  • Staswick, P. E., 1992, Jasmonic acid signaling in plants, in Plant Signals in Interacting with Other Organisms (J. K. Schulz and I. Raskin, eds.), pp. 7–13, American Society for Plant Physiology, Baltimore, Maryland.

    Google Scholar 

  • Stein, J. C., and Nasaralla, J. B., 1993, A plant receptor like gene, the S locus receptor kinase of Brassica oleracea L. encodes a functional serine-threonine kinase, Plant Physiol. 101:1103–1106.

    PubMed  CAS  Google Scholar 

  • Stein, J. C., Howlett, B., Boyes, D. C., Nasarallah, M. E., and Nasarallah, J. B., 1991, Molecular cloning of a putative receptor protein kinase gene encoded at the self incompatibility locus of Brassica oleracea, Proc. Natl. Acad. Sci. USA 88:8816–8820.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., and Irvine, R. F., 1990, Stepwise phosphorylation of myoinositol leading to myoinositol hexaphosphate in Dictyostelium, Nature 346:580–583.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., Hawkins, P. T., Stanley, A. F., Moore, T., Poyner, D. R., Morris, P. J., Hanley, M. R., Kay, R. R., and Irvine, R. F., 1991, Myoinositol pentakisphosphates, structure, biological occurrence and phosphorylation to myoinositol hexakisphosphate, Biochem. J. 275:485–499.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., Radenberg, T., Thiel, U, Vogel, G., Khoo, K-H., Dell, A., Jackson, T. R., Hawkins, P. T., and Mayr, G. W., 1993, The detection, purification, structural characterization and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakis-phosphate(s), J. Biol. Chem. 268:4009–4015.

    PubMed  CAS  Google Scholar 

  • Supattapone, S., Worley, P. F., Barban, J. M., and Snyder, S. H., 1988, Solubilization, purification and characterization of an inositol trisphosphate receptor, J. Biol. Chem. 263:1530–1534.

    PubMed  CAS  Google Scholar 

  • Taylor, C. W., and Marshall, I.C.B., 1992, Calcium and inositol 1,4,5-trisphosphate receptor: A complex relationship, Trends Biochem. Sci. 17:403–407.

    PubMed  CAS  Google Scholar 

  • Terryn, N., Van Montagu, M., and Inze, D., 1993, GTP binding proteins in plants, Plant Mol. Biol. 22:143–152.

    PubMed  CAS  Google Scholar 

  • Theibert, A. B., Estevej, V. A., Ferris, C. D., Danoff, S. K., Barrow, R. K., Presturich, G. D., and Snyder, S. H., 1991, Inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate receptor proteins: Isolation and characterization from rat brain, Proc. Natl. Acad. Sci. USA 88:3165–3169.

    PubMed  CAS  Google Scholar 

  • Thiel, G., Blatt, M. R., Fricker, M. D., White, I. R., and Miller, P., 1993, Modulation of K+ channels in Vicea stomatal guard cells by peptide homologous to auxin binding proteins C terminus, Proc. Natl. Acad. Sci. USA 90:11493–11497.

    PubMed  CAS  Google Scholar 

  • Tobias, C. M., Howlett, B., and Nasarallah, J. B., 1992, An Arabidopsis thaliana gene with sequence similarity to the S-locus receptor kinase of Brassica oleracea, Plant Physiol. 99:284–290.

    PubMed  CAS  Google Scholar 

  • Tomlinson, R. V., and Ballou, C. E., 1962, myo-Inositol polyphosphate intermediates in the de-phosphorylation of phytic acid by phytase, Biochemistry 1:166–177.

    PubMed  CAS  Google Scholar 

  • Tranbarger, T. J., Franceschi, V. R., Hildebrand, D. F., and Grimes, H. D., 1991, The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles, Plant Cell 3:973–987.

    PubMed  CAS  Google Scholar 

  • Trewavas, A. J., and Gilroy, S., 1991, Signal transduction in plant cells, Trends Genet. 7:356–361.

    PubMed  CAS  Google Scholar 

  • Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., and Shinozaki, K., 1994, Two genes that encode Ca2+ dependent protein kinases are induced by draught and high salt stresses in Arabidopsis thaliana, Mol. Gen. Genet. 244:331–346.

    PubMed  CAS  Google Scholar 

  • Veluthambi, K., and Poovaiah, B.W., 1984, Calcium promoted protein phosphorylation in plants, Science 223:167–169.

    PubMed  CAS  Google Scholar 

  • Voglmaier, S. M., Keen, J. H., Murphy, J., Ferris, C. D., Prestwich, G. D., Snyder, S. H., and Theibert, A. B., 1992, Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2, Biochem. Biophys. Res. Commun. 187:158–163.

    PubMed  CAS  Google Scholar 

  • Walker, J. C., and Zhang, R., 1990, Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica, Nature 345:743–746.

    PubMed  CAS  Google Scholar 

  • Weiss, C. A., Huang, H., and Ma, H., 1993, Immunolocalization of the G protein a subunit encoded by the GPA1 gene in Arabidopsis, Plant Cell 5:1513–1528.

    PubMed  CAS  Google Scholar 

  • Wells, W. W., and Eisenberg, F., Jr., eds., 1978, Cyclitols and Phosphoinositides, Academic Press, New York.

    Google Scholar 

  • Wheeler, J. J., and Boss, W. F., 1987, Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells, Plant Physiol. 85:389–392.

    PubMed  CAS  Google Scholar 

  • Wheeler, J. J., and Boss, W. F., 1990, Inositol lysophospholipids in inositol metabolism in plants, in Inositol Metabolism in Plants (D. J. Moore, W. F. Boss, and F. A. Loewus, eds.), pp. 163–172, Wiley-Liss, New York.

    Google Scholar 

  • Wildon, D. C., Doherty, H. M., Eagles, G., Bowles, D. J., and Thain, J. F., 1989, Systemic responses arising from localized heat stimuli in tomato plants, Ann. Bot. 64:691–695.

    Google Scholar 

  • Xu, P., Lloyd, C. W., Staiger, C. J., and Drobak, B. K., 1992, Association of phosphatidyl inositol-4 kinase with plant cytoskelton, Plant Cell 4:941–951.

    PubMed  CAS  Google Scholar 

  • Yamamoto-Hino, M., Sugiyama, T., Hikichi, K., Mattei, M. G., Hasegawa, K., Sekine, S., Sakurada, K., Miyawaki, A., Furuichi, T., Hasegawa, M., and Mikoshiba, K., 1994, Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors, Receptors Channels 2:9–22.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Biswas, S., Biswas, B.B. (1996). Metabolism of myo-Inositol Phosphates and the Alternative Pathway in Generation of myo-Inositol Trisphosphate Involved in Calcium Mobilization in Plants. In: Biswas, B.B., Biswas, S. (eds) myo-Inositol Phosphates, Phosphoinositides, and Signal Transduction. Subcellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0343-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0343-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8007-8

  • Online ISBN: 978-1-4613-0343-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics