History of Phosphoinositide Research

  • Lowell E. Hokin
Part of the Subcellular Biochemistry book series (SCBI, volume 26)


The discovery of the “phosphoinositide effect” arose out of an accidental observation over 40 years ago. The details of this discovery have been reviewed (Hokin, 1987; Hokin and Hokin-Neaverson, 1989). This chapter deals with studies dating up to about 1990.


Phosphatidic Acid Phorbol Ester Inositol Phosphate Salt Gland Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., 1983, Metabolism of phosphoinositides, in Handbook of Neurochemistry (A. Lajtha, ed.), pp. 91–131, Plenum Press, New York.Google Scholar
  2. Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev. 38:227–272.PubMedGoogle Scholar
  3. Abdel-Latif, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977, Acetylcholine increases the breakdown of trisphosphoinositide in rabbit iris muscle prelabelled with [32P]phosphate, Bio-chem. J. 162:61–73.Google Scholar
  4. Agranoff, B. W., 1983, Biochemical mechanisms in the phosphatidylinositol effect, Life Sci. 32:2047–2054.PubMedGoogle Scholar
  5. Akhtar, R. A., and Abdel-Latif, A. A., 1980, Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle, Biochem. J. 142:599–604.Google Scholar
  6. Akhtar, R. A., and Abdel-Latif, A. A., 1984, Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline and ionophore A23187-stimulated accumulation of inositol phosphates, Biochem. J. 224:291–300.PubMedGoogle Scholar
  7. Allison, J. H., and Stewart, M. A., 1971, Reduced brain inositol in lithium-treated rats, Nature 233:267–268.Google Scholar
  8. Altin, J. G., and Byrave, F. L., 1987, The influx of Ca2+ administration of glucagon and Ca2+ mobilizing agents to the perfused liver could involve at least two separate pathways, Biochem. J. 242:43–50.PubMedGoogle Scholar
  9. Anderson, R. E., Maude, M. B., Kelleher, P. A., Rayborn, M. E., and Hollyfield, J. G., 1983, Phosphoinositide metabolism in the retina. Localization to horizontal cells and regulation by light and divalent cations, J. Neurochem. 41:764–771.PubMedGoogle Scholar
  10. Baukal, A. J., Guillemette, G., Rubin, R., Spat, A., and Catt, K. J., 1985, Binding sites for inositol trisphosphate in the bovine adrenal cortex, Biochem. Biophys. Res. Commun. 133:532–538.PubMedGoogle Scholar
  11. Berridge, M. J., 1986, Inositol phosphates as second messengers, in Receptor Biochemistry and Methodology. Phosphoinositides and Receptor Mechanisms (J. W. Putney, Jr., ed.), pp. 25–45, Alan R. Liss, New York.Google Scholar
  12. Berridge, M. J., 1987a, Inositol lipids and cell proliferation, Biochim. Biophys. Acta 907:33–45.PubMedGoogle Scholar
  13. Berridge, M. J., 1987b, Inositol trisphosphate and diacylglycerol: Two interacting second messengers, Annu. Rev. Biochem. 56:159–193.PubMedGoogle Scholar
  14. Berridge, M. J., and Fain, J. N., 1979, Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryp-tamine, Biochem. J. 178:59–69.PubMedGoogle Scholar
  15. Berridge, M. J., Heslop, J. P., Irvine, R. F., and Brown, K. D., 1984, Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor, Biochem. J. 222:195–201.PubMedGoogle Scholar
  16. Berridge, M. J., Downes, C. P., and Hanley, M. R., 1989, Neural and developmental actions of lithium: a unifying hypothesis, Cell 53:411–419.Google Scholar
  17. Besterman, J. M., Duranio, V., and Cuatrecasas, P., 1986, Rapid formation of diacylglycerol from phosphatidylcholine: A pathway for generation of a second messenger, Proc. Natl. Acad Sci. U.S.A. 83:6785–6789.PubMedGoogle Scholar
  18. Biden, T. J., and Wollheim, C. B., 1986, Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RINm5F cells, J. Biol. Chem. 261:11931–11934.PubMedGoogle Scholar
  19. Biden, T. J., Wollheim, C. B., and Schlegel, W., 1986, Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells (GH3). Translocation of Ca2+ into mitochondria from a functionally discrete portion of the nonmitochondrial store, J. Biol. Chem. 261:7223–7229.PubMedGoogle Scholar
  20. Bocckino, S. B., Blackmore, P. F., and Exton, J. H., 1985, Stimulation of 1,2-dracylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II, J. Biol. Chem. 260:14201–14207.PubMedGoogle Scholar
  21. Bond, M., Kitazawa, T., Somlyo, A. P., and Somlyo, A. V., 1984, Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle, J. Physiol. 355:677–695.PubMedGoogle Scholar
  22. Brockerhoff, H., and Ballou, C. E., 1962, Phosphate incorporation in brain phosphoinositides, J. Biol. Chem. 237:49–52.PubMedGoogle Scholar
  23. Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, Myoinositol polyphosphate may be a messenger for visual excitation in limulus photoreceptors, Nature 311:160–163.PubMedGoogle Scholar
  24. Brown, K. D., Blakeley, D. M., Harmon, M. H., Laurie, M. S., and Corps, A. N., 1987, Protein kinase C-mediated negative-feedback inhibition of unstimulated and bombesin-stimulated polyphosphoinositide hydrolysis in Swiss-mouse 3T3 cells, Biochem. J. 245:631–639.PubMedGoogle Scholar
  25. Burgess, G. M., Irvine, R. F., Berridge, M. J., Mckinney, J. S., and Putney, J. W., Jr., 1984, Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes, Biochem. J. 224:741–746.PubMedGoogle Scholar
  26. Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W., Jr., 1985, Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells, Biochem. J. 232:237–243.PubMedGoogle Scholar
  27. Busa, W. B., Ferguson, J. Z., Joseph, S. K., Williamson, J. R., and Nuccitelli, R., 1985, Activation of frog (Xenopus laevis) eggs by inositol trisphosphate, J. Cell Biol. 101:677–682.PubMedGoogle Scholar
  28. Calderon, P., Furnelle, J., and Cristophe, J., 1979, In vitro lipid metabolism in the rat pancreas. II. Effects of secretagogues on fatty acid metabolism, net lipolysis and ATP levels, Biochim. Biophys. Acta 574:391–403.PubMedGoogle Scholar
  29. Capiod, T., Field, A. C., Ogden, D. C., and Sandford, C., 1987, Internal perfusion of guinea-pig hepatocytes with buffered Ca2+ or inositol 1,4,5-trisphosphate mimics noradrenaline activation of K+ and CI conductances, FEBS Lett. 217:247–252.PubMedGoogle Scholar
  30. Carney, D. H., Scott, D. L., Gordon, E. A., and Labelle, E. F., 1985, Phosphoinositides in mitogenesis: Neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation. Cell 42:488–497.Google Scholar
  31. Carter, H. R., and Smith, A. D., 1987, Resolution of the phosphoinositide-specific phospholipase C isolated from porcine lymphocytes into multiple species, Biochem. J. 244:639–645.PubMedGoogle Scholar
  32. Castanga, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.Google Scholar
  33. Celtin, J. H., and Bygrave, F. L., 1985, The Ca2+-mobilizing actions of vasopressin and angiotensin differ from those of the α-adrenergic agonist phenylephrine in the α-adrenergic agonist phenylephrine in the perfused rat liver, Biochem. J. 242:43–50.Google Scholar
  34. Colodzin, M., and Kennedy, E. P., 1965, Biosynthesis of diphosphoinositide in brain, J. Biol. Chem. 240:3771–3780.PubMedGoogle Scholar
  35. Conn, P. M., Ganong, B. R., Ebeling, J., Staley, D., Neidel, J. E., and Bell, R. M., 1985, Diacylglycerols release LH: Structure-activity relations reveal a role for protein kinase C, Biochem. Biophys. Res. Commun. 126:532–539.PubMedGoogle Scholar
  36. Connolly, T. M., Lawing, W. J., Jr., and Majerus, P. W., 1986a, Protein kinase C phosphorylates human platelet inositol trisphosphate 5′-Phosphomonoesterase, increasing the phosphatase activity, Cell 46:951–958.PubMedGoogle Scholar
  37. Connolly, T. M., Wilson, D. B., Bross, T. E., and Majerus, P. W., 1986b, Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. Metabolism in cell-free extracts, J. Biol. Chem. 261:122–126.PubMedGoogle Scholar
  38. Connolly, T. M., Bansal, V. S., Bross, T. E., Irvine, R. F., and Majerus, P. W., 1987, The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes, J. Biol. Chem. 262:2146–2149.PubMedGoogle Scholar
  39. Cosgrove, D. J., 1969, Ion-exchange chromatography of inositol polyphosphates, Ann. N.Y. Acad. Sci. 165:677–686.PubMedGoogle Scholar
  40. Cotecchia, S., Leeb-Lundberg, L. M. F., Hagen, P. O., Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol ester effects on α,-adrenoceptor binding and phosphatidylinositol metabolism in cultured vascular smooth muscle cells, Life Sci. 37:2389–2398.PubMedGoogle Scholar
  41. Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Biochem. J. 212:733–747.PubMedGoogle Scholar
  42. Crossley, I., Swann, K., Chambers, E., and Whitaker, M., 1988, Activation of sea urchin eggs by inositol phosphates is independent of external calcium, Biochem. J. 252:257–262.PubMedGoogle Scholar
  43. Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F., 1995, Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP 1 family, Nature 376:527–530.PubMedGoogle Scholar
  44. Cuthbertson, K. S. R., and Cobbold, P. H., 1985, Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+, Nature 316:541–542.PubMedGoogle Scholar
  45. Davis, R. J., Ganong, B. R., Bell, R. M., and Czech, M. P., 1985, Structural requirements for diacylglycerols to mimic tumor-promoting phorbol diester action on the epidermal growth factor receptor, J. Biol. Chem. 260:5315–5322.PubMedGoogle Scholar
  46. Dawson, R. M. C., 1954, The measurement of 32P labelling of individual kephalins and lecithin in a small sample of tissue, Biochim. Biophys. Acta 14:374–379.PubMedGoogle Scholar
  47. Dawson, R. M. C., 1959, Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68–77.PubMedGoogle Scholar
  48. Deckmyn, H., Tu, S. M., and Majerus, P. W., 1986, Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes, J. Biol. Chem. 261:16553–16558.PubMedGoogle Scholar
  49. Delfert, D. M., Hill, S., Pershadsingh, H. A., Sherman, W. R., and McDonald, J. M., 1986, myo-inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes, Biochem. J. 236:37–44.PubMedGoogle Scholar
  50. Diringer, H., and Friis, R. R., 1977, Changes in phosphatidylinositol metabolism correlated with growth state of normal and Rous sarcoma virus-transformed Japanese quail cells, Cancer Res. 37:2978–2984.Google Scholar
  51. Dixon, J. F., and Hokin, L. E., 1984, Secretagogue-stimulated phosphatidylinositol breakdown in the exocrine pancreas liberates arachidonic acid, stearic acid, and glycerol by sequential actions of phospholipase C and diacylglycerol lipase, J. Biol. Chem. 259:14418–14425.PubMedGoogle Scholar
  52. Dixon, J. F., and Hokin, L. E., 1985 The formation of inositol 1,2-cyclic phosphate on agonist stimulation of phosphoinositide breakdown in mouse pancreatic minilobules. J. Biol. Chem. 260:16068–16071.PubMedGoogle Scholar
  53. Dixon, J. F., and Hokin, L. E., 1987a, Inositol 1,2-cyclic 4,5-trisphosphate is formed in the rat parotid gland on muscarinic stimulation, Biochem. Biophys. Res. Commun. 149:1208–1213.PubMedGoogle Scholar
  54. Dixon, J. F., and Hokin, L. E., 1987b, Inositol 1,2-cyclic 4,5-trisphosphate: Concentration relative to inositol 1,4,5-trisphosphate in pancreatic minilobules on stimulation with carbamylcholine in the absence of lithium. Possible role as a second messenger in long-but not short-term responses, J. Biol. Chem. 262:13892–13895.PubMedGoogle Scholar
  55. Dixon, J. F., and Hokin, L. E., 1989, Kinetic analysis of the formation of inositol 1:2 cyclic phosphate in carbachol-stimulated pancreatic minilobules. Half is formed by direct phospho-diestratic cleavage of phosphatidylinositol, J. Biol. Chem. 264:11721–11724.PubMedGoogle Scholar
  56. Dixon, J. F., Los, G. V., and Hokin, L. E., 1992, Lithium enhances accumulation of [3H] inositol radioactivity and mass of second messenger inositol 1,4,5-trisphosphate in monkey cerebral cortex slices, J. Neurochem., 5:2332–2335.Google Scholar
  57. Dixon, J. F., Los, G. V., and Hokin, L. E., 1994, Lithium stimulates glutamate release and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices, Proc. Natl. Acad. Sci. U.S.A. 91:8358–8362.PubMedGoogle Scholar
  58. Douglas, W. W., 1974, Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. Biochem. Soc. Symp. 39:1–28.PubMedGoogle Scholar
  59. Downes, C. P., and Michell, R. H., 1985, Inositol phospholipid breakdown as a receptor-controlled generator of second messengers, in Molecular Mechanisms of Transmembrane Signalling (P. Cohen and M. D. Houslay, eds.), pp. 4–56, Elsevier, Amsterdam.Google Scholar
  60. Downes, C. P., and Stone, M. A., 1986, Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland, Biochem. J. 234:199–204.PubMedGoogle Scholar
  61. Durell, J., Garland, J. T., and Friedel, R. O., 1969, Acetylcholine action: Biochemical aspects, Science 165:862–866.PubMedGoogle Scholar
  62. Endo, Y., and Schultz, R. M., 1987, Effects of phorbol esters and a diacylglycerol on mouse eggs: Inhibition of the fertilization and modification of the zona pellucida, Dev. Biol. 119:199–209.PubMedGoogle Scholar
  63. Enyedi, P., and Williams, G. H., 1988, Heterogeneous inositol tetrakisphosphate binding sites in the adrenal cortex, J. Biol. Chem. 263:7940–7942.PubMedGoogle Scholar
  64. Fain, J. N., 1987, Activation of phosphoinositide specific phospholipase C by ligands in the presence of guanine nucleotides, in Mechanisms of Signal Transduction by Hormones and Growth Factors (M. C. Cabot, and W. L. McKeehan, eds.), pp. 133–147, Alan R. Liss, New York.Google Scholar
  65. Fain, J. N., and Berridge, M. J., 1979a, Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland, Biochem. J. 178:45–58.PubMedGoogle Scholar
  66. Fain, J. N., and Berridge, M. J., 1979b, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands, Biochem. J. 180:655–661.PubMedGoogle Scholar
  67. Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311:157–160.PubMedGoogle Scholar
  68. Fisher, D. B., and Mueller, G. C., 1971, Studies of the mechanism by which PHA stimulates phospholipid metabolism of human lymphocytes, Biochim. Biophys. Acta 248:434–448.Google Scholar
  69. Friesen, L. L., and Gerrard, J. M., 1985, The effects of I-oleoyl-2-acetylglycerol on platelet protein phosphorylation and platelet ultrastructure, Am. J. Pathol. 121:79–87.PubMedGoogle Scholar
  70. Fry, M. J., Gebhardt, A., Parker, P. J., and Foljlkes, G., 1985, Phosphatidylinositol turnover and transformation of cells by Abelson murine lukemia virus, EMBO J. 4:3173–3178.PubMedGoogle Scholar
  71. Fujita, I., Irita, K., Takeshiga, K., and Minakami, S., 1984, Diacylglycerol, I-oleoyl-2-acetylglycerol, stimulates superoxide generation from human neutrophils, Biochem. Biophys. Res. Commun. 120:318–324.PubMedGoogle Scholar
  72. Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56:615–649.PubMedGoogle Scholar
  73. Gomperts, B. D., 1983, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors, Nature 306:64–66.PubMedGoogle Scholar
  74. Gonzales, R. A., and Crews, F. T., 1985, Cholinergic-and adrenergic-stimulated inositide hydrolysis in brain: Interaction, regional distribution and coupling mechanisms, J. Neurochem. 45:1076–1084.PubMedGoogle Scholar
  75. Goodhardt, M., Ferry, N., Geynet, P., and Hanoune, J., 1982, Hepatic α1-adrenergic receptors show agonist-specific regulation by guanine nucleotides, J. Biol. Chem. 257:11577–11583.PubMedGoogle Scholar
  76. Graham, R. A., Meyer, R. A., Szwergold, B. S., and Brown, T. R., 1987, Observation of myo-inositol 1,2-(cyclic) phosphate in a Morris hepatoma by 31p NMR, J. Biol. Chem. 262:35–37.PubMedGoogle Scholar
  77. Guillemette, G., Balla, T., Baukal, A. J., and Catt, K. J., 1988, Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fraction, J. Biol. Chem. 263:4541–4548.PubMedGoogle Scholar
  78. Habernicht, A. J. R., Glomset, J. A., King, W. C., Nist, C., Mitchell, C. D., and Ross, R., 1981, Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by PDGF, J. Biol. Chem. 256:12329–12335.Google Scholar
  79. Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261:8100–8103.PubMedGoogle Scholar
  80. Hansen, C. A., Johansen, R. A., Williamson, M. T., and Williamson, J. R., 1987, Purification and characterization of two types of soluble inositol phosphate 5-phosphomonoesterases from rat brain, J. Biol. Chem. 262:17319–17326.PubMedGoogle Scholar
  81. Harwood, J. L., and Hawthorne, J. N., 1969, The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues, Biochim. Biophys. Acta 171:75–88.PubMedGoogle Scholar
  82. Haslam, R. J., and Davidson, M. M. L., 1984, Guanine nucleotides decrease the free Ca2+ required for secretion of serotonin from permeabilized platelets. Evidence of a role of GTP-binding protein in platelet activation, FEBS Lett. 174:90–95.PubMedGoogle Scholar
  83. Hawkins, P. T., Stephens, L., and Downes, C. P., 1986, Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate, Biochem. J. 238:507–516.PubMedGoogle Scholar
  84. Hawkins, P. T., Berne, C. P., Morris, A. J., and Downes, C. P., 1987, Inositol 1,2-cyclic 4,5-trisphosphate is not a product of muscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis in rat parotid glands, Biochem. J. 243:211–218.PubMedGoogle Scholar
  85. Helms, J. B., de Vries, K.-J., and Wirtz, K. W. A., 1991, Synthesis of phosphatidylinositol 4,5-bisphosphate in the endoplasmic reticulum of Chinese hamster ovary cells, J. Biol. Chem. 266:21368–21374.PubMedGoogle Scholar
  86. Heslop, J. P., Irvine, R. F., Tashjian, A. H., Jr., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119:395–401.PubMedGoogle Scholar
  87. Heslop, J. P., Blakeley, D. M., Brown, K. D., Irvine, R. F., and Berridge, M. J., 1986, Effects of bombesin and insulin on inositol (1,4,5)trisphosphate and inositol (1,3,4)trisphosphate formation in Swiss 3T3 cells, Cell 47:703–709.PubMedGoogle Scholar
  88. Hirata, M., Sasaguri, T., Hamachi, T., Hashimoto, T., Kukita, M., and Koga, T., 1985, Irreversible inhibition of Ca2+ release in saponin-treated macrophages by the photoaffinity derivative of inositol 1,4,5-trisphosphate, Nature 317:723–725.PubMedGoogle Scholar
  89. Hokin, L. E., 1965, Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion, Proc. Natl. Acad. Sci. U.S.A. 53:1369–1376.PubMedGoogle Scholar
  90. Hokin, L. E., 1966, Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices, Biochim. Biophys. Acta 115:219–221.PubMedGoogle Scholar
  91. Hokin, L. E., 1968, Dynamic aspects of phospholipids during protein secretion, Int. Rev. Cytol. 23:187–208.PubMedGoogle Scholar
  92. Hokin, L. E., 1969, Phospholipid metabolism and functional activity of nerve cells, in The Structure and Function of Nervous Tissue (G. H. Bourne, ed.), pp. 161–184, Academic Press, New York.Google Scholar
  93. Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem. 54:205–235.PubMedGoogle Scholar
  94. Hokin, L. E., 1987, The road to the phosphoinositide-generated second messengers, Trends Pharmacol. Sci. 8:53–56.Google Scholar
  95. Hokin, L. E., and Hokin, M. R., 1955a, Effects of acetylcholine on phosphate turnover in phospholipids of brain cortex in vitro, Biochim. Biophys. Acta 16:229–237.PubMedGoogle Scholar
  96. Hokin, L. E., and Hokin, M. R., 1955b, Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices, Biochim. Biophys. Acta 18:102–110.PubMedGoogle Scholar
  97. Hokin, L. E., and Hokin, M. R., 1956, The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion, J. Physiol. 132:442–453.PubMedGoogle Scholar
  98. Hokin, L. E., and Hokin, M. R., 1958a, Phosphoinositides and protein secretion in pancreas slices, J. Biol. Chem. 233:805–810.PubMedGoogle Scholar
  99. Hokin, L. E., and Hokin, M. R., 1958b, Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide, J. Biol. Chem. 233:818–821.PubMedGoogle Scholar
  100. Hokin, L. E., and Hokin, M. R., 1960, Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in the avial salt gland on stimulation of secretion, J. Gen. Physiol. 44:61–85.PubMedGoogle Scholar
  101. Hokin, L. E., and Hokin-Neaverson, M. R., 1989, Commentary on effects of acetylcholine on the turnover of phosphoryl unites in individual phospholipids of pancreas slices” by L. E. Hokin, and M. R. Hokin, Biochim. Biophys. Acta 18 (1955) 102–110, Biochim. Biophys. Acta 1000:465–469.Google Scholar
  102. Hokin, L. E., and Huebner, D., 1967, Radioautographic localization of the increased synthesis of phosphatidylinositol in response to pancreozymin or acetylcholine in guinea pig pancreas slices, J. Cell Biol. 33:521–530.PubMedGoogle Scholar
  103. Hokin, M. R., 1968, Studies on chemical mechanisms of the action of neurotransmitters and hormones: Relationship between hormone-stimulated 32P incorporated into phosphatidic acid and into phosphatidylinositol in pigeon pancreas slices, Arch. Biochem. Biophys. 124:271–279.PubMedGoogle Scholar
  104. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of 32P into the phospholipids of pancreas slices, J. Biol. Chem. 203:967–977.PubMedGoogle Scholar
  105. Hokin, M. R., and Hokin, L. E., 1954, Effects of acetylcholine on phospholipids in the pancreas, J. Biol. Chem. 209:549–558.PubMedGoogle Scholar
  106. Hokin, M. R., and Hokin, L. E., 1964, Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland, in Metabolism and Physiological Significance of Lipids (R. M. C. Dawson, and D. N. Rhodes, eds.), pp. 423–434, John Wiley & Sons, New York.Google Scholar
  107. Hokin-Neaverson, M., 1974, Acetylcholine causes a net decrease in phosphatidylinositol and a net increase in phosphatidic acid in mouse pancreas, Biochem. Biophys. Res. Commun. 58:763–768.PubMedGoogle Scholar
  108. Hokin-Neaverson, M., 1977, Metabolism and role of phosphatidylinositol in acetylcholine-stimulated membrane function, Adv. Exp. Biol. Med. 83:429–446.Google Scholar
  109. Hughes, A. R., Takemura, H., and Putney, J. W., Jr., 1988, Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells: Relationship to calcium signalling, J. Biol. Chem. 263:10314–10319.PubMedGoogle Scholar
  110. Hughes, B. P., Rye, K. A., Pickford, L. B., Barritt, G. J., and Chalmers, A. H., 1984, A transient increase in diacylglycerols is associated with the action of vasopressin on hepatocytes, Biochem. J. 222:535–540.PubMedGoogle Scholar
  111. Hunter, T., 1986, Cell growth control mechanisms, Nature 322:14–16.PubMedGoogle Scholar
  112. Imai, A., and Gershengorn, M. C., 1986, Phosphatidylinositol 4,5-bisphosphate turnover is transient while phosphatidylinositol turnover is persistent in thyrotropin-releasing hormone-stimulated rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 83:8540–8544.PubMedGoogle Scholar
  113. Imboden, J. B., and Stobo, J. D., 1985, Transmembrane signalling by T cell antigen receptor. Perturbation of the T3-antigen complex generates inositol phosphates and releases calcium ion intracellular stores, J. Exp. Med. 161:446–456.PubMedGoogle Scholar
  114. Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y., 1977, Studies on cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues, J. Biol. Chem. 252:7610–7616.PubMedGoogle Scholar
  115. Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240:917–920.PubMedGoogle Scholar
  116. Irvine, R. F., and Moor, R. M., 1987, Inositol (1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate, Biochem. Biophys. Res. Commun. 146:284–290.PubMedGoogle Scholar
  117. Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P., 1984, Inositol trisphosphates in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.PubMedGoogle Scholar
  118. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986a, The inositol tris/tetra-kisphosphate pathway—demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues, Na-tare 320:631–634.Google Scholar
  119. Irvine, R. F., Letcher, A. J., Lander, D. J., and Berridge, M. J., 1986b, Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells, Biochem. J. 240:301–304.PubMedGoogle Scholar
  120. Ishii, H., Connolly, T. M., Bross, T. E., and Majerus, P. W., 1986, Inositol cyclic trisphosphate [inositol 1,2-(cyclic)-4,5-trisphosphate] is formed upon thrombin stimulation of human platelets, Proc. Natl. Acad. Sci. U.S.A. 83:6397–6401.PubMedGoogle Scholar
  121. Jones, L. M., and Michell, R. H., 1974, Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation in rat parotid-gland fragments, Biochem. J. 142:583–590.PubMedGoogle Scholar
  122. Jope, R. S., and Williams, M. B., 1994, Lithium and brain signal transduction systems, Biochem. Pharmacol. 47:429–441.PubMedGoogle Scholar
  123. Joseph, S. K., and Williamson, J. R., 1986, Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes, J. Biol. Chem. 261:14658–14664.PubMedGoogle Scholar
  124. Kaplan, D. R., Whitman, M., Schaffhausen, B., Raptis, L., Garcea, R. L., Pallas, D., Roberts, T. M., and Cantley, L., 1986, Phosphatidylinositol metabolism and polyoma-mediated transformation, Proc. Natl. Acad. Sci. U.S.A. 83:3624–3628.PubMedGoogle Scholar
  125. Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S., and Jakobs, K. H., 1985, Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase, Eur. J. Biochem. 151:431–437.PubMedGoogle Scholar
  126. Katz, B., 1969, The Release of Neural Transmitter Substances, p. 1–60, Charles C. Thomas, Springfield, IL.Google Scholar
  127. Kemp, P., Hubscher, G., and Hawthorne, J. N., 1961a, A liver phospholipase hydrolysing phospho-inositides, Biochim. Biophys. Acta 31:585–586.Google Scholar
  128. Kemp, P., Hubscher, G., and Hawthorne, J. N., 1961b, Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193–200.PubMedGoogle Scholar
  129. Kennedy, E. D., Challis, R. A. J., and Nahonski, S. R., 1989, Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices, J. Neurochem. 53:1652–1655.PubMedGoogle Scholar
  130. Kennedy, E. P., 1986, The biosynthesis of phospholipids, in Lipids and Membranes: Past, Present and Future (J. A. F. Op den Kemp, B. Roelofsen, and K. W. A. Wirtz, eds.), pp. 171–206, Elsevier, Amsterdam.Google Scholar
  131. Kennerly, D. A., 1987, Diacylglycerol metabolism in mast cells, J. Biol. Chem. 262:16305–16313.PubMedGoogle Scholar
  132. King, C. E., Stephens, L. R., Hawkins, P. T., Guy, G. R., and Michell, R. H., 1987, Multiple metabolic pools of phosphoinositides and phosphatidate in human erythrocytes incubated in a medium that permits rapid transmembrane exchange of phosphate, Biochem. J. 244:209–217.PubMedGoogle Scholar
  133. Kirk, C. J., Creba, J. A., Downes, C. P., and Michell, R. H., 1981, Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function, Biochem. Soc. Trans. 9:377–379.PubMedGoogle Scholar
  134. Kojima, I., Kojima, K., and Rasmussen, H., 1985, Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells, J. Biol. Chem. 260:9177–9184.PubMedGoogle Scholar
  135. Kraft, A. S., and Anderson, W. B., 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature 301:621–623.PubMedGoogle Scholar
  136. Kraft, A. S., Anderson, W. B., Cooper, H. L., and Sando, J. J., 1982, Decrease in cytosolic calcium phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells, J. Biol. Chem. 257:13193–13196.PubMedGoogle Scholar
  137. Lapetina, E. G., Reep, R., Ganong, B. R., and Bell, R. M., 1985, Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets, J. Biol. Chem. 260:1358–1361.PubMedGoogle Scholar
  138. Lee, C. H., and Hokin, L. E., 1989, Inositol 1,2-cyclic 4,5-trisphosphate is an order of magnitude less potent than inositol 1,4,5-trisphosphate in mobilizing intracellular stores of calcium in mouse pancreatic acinar cells, Biochem. Biophys. Res. Commun. 159:561–565.PubMedGoogle Scholar
  139. Lee, C. H., Dixon, J. F., Reichman, M., Moummi, C., Los, G., and Hokin, L. E., 1992, Li+ increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse, and rat. The increases require inositol supplementation in mouse and rat but not in guinea pig, Biochem. J. 282:377–385.PubMedGoogle Scholar
  140. Lee, T. C., and Huggins, C. G., 1968, Triphosphoinositide Phosphomonoesterase in rat kidney cortex. I. General properties and subcellular localization, Arch. Biochem. Biophys. 126:206–213.PubMedGoogle Scholar
  141. Litosch, I., and Fain, J. N., 1986, Minireview. Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39:187–194.PubMedGoogle Scholar
  142. Macara, I. G., Marinetti, G. V., Livingston, J. N., and Balduzzi, P. C., 1985, Lipid phosphorylating activities and tyrosine kinases: A possible role for phosphatidylinositol turnover in transformation, in Growth Factors and Transformation (F. Feramisco, ed.), pp. 365–368, Cold Spring Harbor Laboratory, New York.Google Scholar
  143. Marinetti, G. V., and Stotz, E., 1956, Chromatography of phosphatides on silicic acid impregnated paper, Biochim. Biophys. Acta 21:168–170.PubMedGoogle Scholar
  144. Matuoka, K., Fukami, K., Nakanishi, O., Kawai, S., and Takenawa, T., 1988, Mitogenesis in response to PDGF and bombesin abolished by microinjection of antibody to PIP2, Science 239:640–643.PubMedGoogle Scholar
  145. Mayer, B. J., Hamagijchi, M., and Hanafusa, H., 1988, A novel viral oncogene with structural similarity to phospholipase C, Nature 332:272–275.PubMedGoogle Scholar
  146. McNeil, P. L., Mckenna, M. P., and Taylor, D. L., 1985, A transient rise in cytosolic calcium follows stimulation of quiescent cells with growth factors and is inhibitable with phorbol myristate acetate, J. Cell Biol. 101:372–379.PubMedGoogle Scholar
  147. Mendoza, S. A., Lopez-Rivas, A., Sinnett-Smith, J. W., and Rozengurt, E., 1986, Phorbol esters and diacylglycerol inhibit vasopressin-induced increases in cytoplasmic-free Ca2+ and 45Ca2+ efflux in Swiss 3T3 cells, Exp. Cell. Res. 164:536–545.PubMedGoogle Scholar
  148. Meyer, T., Holowka, D., and Stryer, L., 1988, Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate, Science 240:653–656.PubMedGoogle Scholar
  149. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acto 415:81–147.Google Scholar
  150. Michell, R. H., and Hawthorne, J. N., 1965, The site of diphosphoinositide synthesis in rat liver, Biochem. Biophys. Res. Commun. 21:333–338.PubMedGoogle Scholar
  151. Micheli, R. H., Jafferji, S. S., and Jones, L. M., 1977, The possible involvement of phospha-tidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell-surface calcium gates, in Function and Biosynthesis of Lipid (N. G. Bazan, B. B. Brenner, and N. M. Buisto, eds.), pp. 447–464, Plenum Press, New York.Google Scholar
  152. Mikoshiba, K., Furuichi, T., and Miyawaki, A., 1994, InsP3 receptor and its regulation in the nervous system, in Proceeding of the XVIth International Congress of Biochemistry and Molecular Biology, Vol. I, p. 103, Publications & Information Directorate, Dr. K. S. Krishan Mara, New Delhi, India.Google Scholar
  153. Molina Y., Vedia, L. M., and Lapetina, E. G., 1986, Phorbol 12,13-dibutyrate and I-oleoyl-2-acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets, J. Biol. Chem. 261:10493–10495.Google Scholar
  154. Monaco, M. E., and Woods, D., 1983, Characterization of the hormone-sensitive phospha-tidylinositol pool in WRK-I cells, J. Biol. Chem. 258:15125–15129.PubMedGoogle Scholar
  155. Muallem, S., Schoeffield, M., Pandol, S., and Sachs, G., 1985, Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 82:4433–4437PubMedGoogle Scholar
  156. Navidi, M., Yoa, F. G., and Sun, G. Y., 1991, Brief chronic effects of lithium administration on rat brain phosphoinositides and phospholipids, J. Neurosci. Res. 28:428–433.PubMedGoogle Scholar
  157. Niedel, J. E., and Blackshear, P. J., 1986, Protein kinase C, in Receptor Biochemistry and Methodology. Phosphoinositides and Receptor Mechanisms (J. W. Putney, Jr., ed.), pp. 47–88, Alan R. Liss, New York.Google Scholar
  158. Nishizuka, Y., 1984a, Turnover of inositol lipids and signal transduction, Science 225:1365–1370.PubMedGoogle Scholar
  159. Nishizuka, Y., 1984b, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308:693–698.PubMedGoogle Scholar
  160. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C., Science 233:305–312.PubMedGoogle Scholar
  161. Nishizuka, Y., 1988, The heterogeneity and differential expression of multiple species of the protein kinase C family, Biofactors 1:17–20.PubMedGoogle Scholar
  162. Oron, Y., Dascal, N., Nadler, E., and Lupu, M., 1985, Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes, Nature 313:141–143.PubMedGoogle Scholar
  163. Palade, G. E., Siekevitz, P., and Caro, L. G., 1962, Structure, chemistry and function of the pancreatic exocrine cell, in Ciba Foundation Symposium on Endocrine Pancreas (A. V. S. de Reuck, and M. P. Cameron, eds.), pp. 23–55, Chruchill, London.Google Scholar
  164. Parker, I., and Miledi, R., 1987, Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes, Proc. R. Soc. 231:27–36.Google Scholar
  165. Prentki, M., Janjic, D., Biden, T. J., Blondel, B., and Wollheim, C. B., 1984, Regulation of Ca2+ transport by isolated organelles of a rat insulinoma, J. Biol. Chem. 259:10118–10123.PubMedGoogle Scholar
  166. Putney, J. W., Jr., 1978, Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability, Pharmacol. Rev. 30:209–245.PubMedGoogle Scholar
  167. Rana, R. S., and Hokin, L. E., 1990, Role of phosphoinositides in transmembrane signaling, Physiol Rev. 70:115–164.PubMedGoogle Scholar
  168. Rasmussen, H., and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.PubMedGoogle Scholar
  169. Redman, C. M., and Hokin, L. E., 1959, Phospholipide turnover in microsomal membranes of the pancreas during enzyme secretion, J. Biophys. Biochem. Cytol. 6:207–214.PubMedGoogle Scholar
  170. Redman, C. M., and Hokin, L. E., 1964, Stimulation of the metabolism of phosphatidylinositol and phosphatidic acid in brain cytoplasmic fractions by low concentrations of cholinergic agents, J. Neurochem. 11:155–163.PubMedGoogle Scholar
  171. Renard, D., Poggioli, J., Berthon, B., and Claret, M., 1987, How far does phospholipase C activity depend on the cell calcium concentration? A study of intact cells, Biochem. J. 243:391–398.PubMedGoogle Scholar
  172. Ringer, S., 1883, A further contribution regarding the influence of different constituents of the blood on the contraction of the heart, J. Physiol. 4:29–42.PubMedGoogle Scholar
  173. Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, H. M., 1971, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action, J. Biol. Chem. 246:1877–1882.PubMedGoogle Scholar
  174. Rodriguez-Pena, A., and Rozengurt, E., 1985, Serum, like phorbol esters, rapidly activates protein kinase C in intact quiescent fibroblasts, EMBO J. 4:71–76.PubMedGoogle Scholar
  175. Rubin, R. P., 1982, Calcium and Cellular Secretion, Plenum Press, New York.Google Scholar
  176. Ryu, S. H., Suh, P., Cho, K. S., Lee, K., and Rhee, S. G., 1987, Bovine brain cytosol contains three immunologically distinct forms of inositol phospholipid-specific phospholipase C, Proc. Natl. Acad. Sci. U.S.A. 84:6649–6653.PubMedGoogle Scholar
  177. Safran, A., Sagi-Eisenberg, R., Neumann, D., and Fuchs, S., 1987, Phosphorylation of the acetylcholine receptor by protein kinase C and identification of the phosphorylation site within the receptor I subunit, J. Biol. Chem. 262:10506–10510.PubMedGoogle Scholar
  178. Sagi-Eisenberg, R., 1989, GTP-binding proteins as possible targets for PKC action, Trends Biochem. Sci. 14:355–357.PubMedGoogle Scholar
  179. Sano, K., Takai, Y., Yamanishi, J., and Nishizuka, Y., 1983, A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen actions, J. Biol. Chem. 258:2010–2013.PubMedGoogle Scholar
  180. Santiago-Calvo, E., Mula, S., Redman, C. M., Hokin, M. R., and Hokin, L. E., 1964, The chromatographic separation of polyphosphoinositides and studies on their turnover in various tissues, Biochim. Biophys. Acta 84:550–562.PubMedGoogle Scholar
  181. Schmidt, G., and Thannhauser, S. J., 1945, A method for the determination of desoxyribonucleic acid, ribonucleic, acid, and phosphoproteins in animal tissues, J. Biol. Chem. 161:83–89.PubMedGoogle Scholar
  182. Schmidt, S. Y., 1983, Light-dependent and cytidine-dependent phosphatidylinositol synthesis in photoreceptor cells of the rat, J. Cell Biol. 97:832–837.PubMedGoogle Scholar
  183. Schmidt-Nielson, K., 1960, The salt-secreting gland of marine birds, Circulation 21:955–967.Google Scholar
  184. Schulz, I., and Stolze, H. H., 1980, The exocrine pancreas: The role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion, Annu. Rev. Physiol. 42:127–156.PubMedGoogle Scholar
  185. Sekar, M. C., and Hokin, L. E., 1986, The role of phosphoinositides in signal transduction, J. Membr. Biol. 89:193–210.PubMedGoogle Scholar
  186. Sekar, M. C., Dixon, J. F., and Hokin, L. E., 1987, The formation of inositol 1,2-cyclic 4,5-trisphosphate and inositol 1,2-cyclic 4-bisphosphate on stimulation of mouse pancreatic min-ilobules with carbamylcholine, J. Biol. Chem. 262:340–344.PubMedGoogle Scholar
  187. Shah, J., and Pant, H. C., 1988, Potassium-channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fractions isolated from the rat brain, Biochem. J. 250:617–620.PubMedGoogle Scholar
  188. Sherman, W. R., Gish, B. G., Honchar, M. P., and Munsell, L. Y., 1986, Effects of lithium on phosphoinositide metabolism in vivo, Fed. Proc. 45:2639–2646.PubMedGoogle Scholar
  189. Snoek, G., de Wit, J. S., and Wirtz, K. W., 1993, Properties and intracellular localization of phosphatidylinositol transfer protein in Swiss mouse 3T3 cells, Biochem. Soc. Trans. 21:244–247.PubMedGoogle Scholar
  190. Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Kriz, R. W., and Knopf, J. L., 1988, Sequence similarity of phospholipase C with the non-catalytic region of src, Nature 332:269–272.PubMedGoogle Scholar
  191. Steinhardt, R. A., and Epel, D., 1974, Activation of sea urchin eggs by a calcium ionophore, Proc. Natl. Acad. Sci. U.S.A. 71:1915–1919.PubMedGoogle Scholar
  192. Stephens, L. R., Hawkins, P. T., Barker, C. J., and Downes, P. C., 1988a, Synthesis of myo-inositol 1,3,4,5,6-pentakisphosphate from inositol phosphates generated by receptor activation, Bio-chem. J. 253:721–733.Google Scholar
  193. Stephens, L. R., Hawkins, P. T., Morris, A. J., and Downes, P. C., 1988b, L-Myo-inositol 1,4,5,6-tetrakisphosphate (3-hydroxy)kinase, Biochem. J. 249:283–292.PubMedGoogle Scholar
  194. Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic de-phosphorylation of inositol 1,4,5-trisphopshate to inositol in liver, Nature 312:374–376.PubMedGoogle Scholar
  195. Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate, Nature 306:67–69.PubMedGoogle Scholar
  196. Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F., and Schultz, I., 1984, Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas, J. Membr. Biol. 81:241–253.PubMedGoogle Scholar
  197. Streb, H., Heslop, J. P., Irvine, R. F., and Berridge, M. J., 1985, Relationship between secretagogue-induced Ca2+ release and inositol phosphate production in permeabilized pancreatic acinar cells, J. Biol. Chem. 260:7309–7315.PubMedGoogle Scholar
  198. Sugimoto, Y., Whitman, M., Cantley, L. C., and Erikson, R. L., 1984, Evidence that the Rous sarcoma transformed gene product phosphorylates phosphatidylinositol and diacylglycerol, Proc. Natl. Acad. Sci. U.S.A. 81:2117–2121.PubMedGoogle Scholar
  199. Suh, P. G., Ruy, S. H., Moon, K. H., Suh, H. W., and Rhee, S. G., 1988, Cloning and sequence of multple forms of phospholipase C., Cell 54:161–169.PubMedGoogle Scholar
  200. Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor, J. Biol. Chem. 263:1530–1534PubMedGoogle Scholar
  201. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979a, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692–3695.PubMedGoogle Scholar
  202. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y., 1979b, Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91:1218–1224.PubMedGoogle Scholar
  203. Tashjian, A. H., Jr., Heslop, J. P., and Berridge, M. J., 1987, Subsecond and second changes in inositol polyphosphates in GH4CI cells induced by thyrotropin-releasing hormone, Biochem. J. 243:305–308.PubMedGoogle Scholar
  204. Taylor, M. V., Metcalfe, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogens increase phosphorylation of phosphoinositides in tymocytes, Nature 312:463–466.Google Scholar
  205. Taylor, M. V., Hesketh, T. R., and Metcalfe, J. C., 1988, Phosphoinositide metabolism and the calcium response to concanavalin A in S49 T-lymphoma cells, Biochem. J. 249:847–855.PubMedGoogle Scholar
  206. Thomas, A. P., Marks, J. S., Coll, K. E., and Williamson, J. R., 1983, Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes, J. Biol. Chem. 258:5716–5725.PubMedGoogle Scholar
  207. Thompson, W., and Dawson, R. M. C., 1964, The triphosphoinositide phosphodiesterase of brain tissue, Biochem. J. 91:237–243.PubMedGoogle Scholar
  208. Ui, M., 1986, Pertussis toxin as a probe of receptor coupling to inositol lipid metabolism, in Receptor Biochemistry and Methodology. Phosphoinositides and Receptor Mechanisms (J. W. Putney, Jr., ed.), pp. 163–195, Alan R. Liss, New York.Google Scholar
  209. Vallejo, M., Jackson, T., Lightman, S., and Hanley, M. R., 1987, Occurrence and extracellular actions of inositol pentakis-and hexakisphosphate in mammalian brain, Nature 330:656–658.PubMedGoogle Scholar
  210. Wahl, M. I., Daniel, T. O., and Carpenter, G., 1988, Antiphosphotyrosine recovery of phospholipase C activity after EGF treatment of A-431 cells, Science 241:968–970.PubMedGoogle Scholar
  211. Waloga, G., and Anderson, R. E., 1985, Effects of inositol-1,4,5-trisphosphate injections into salamander rods, Biochem. Biophys. Res. Commun. 126:59–62.PubMedGoogle Scholar
  212. Watson, S. P., and Lapetina, E. G., 1985, 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: Possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. U.S.A. 82:2623–2626.PubMedGoogle Scholar
  213. Weinstein, I. B., 1987, Growth factors, oncogenes, and multistage carcinogenesis, J. Cell Biochem. 33:213–224.PubMedGoogle Scholar
  214. Whitman, M., Fleischman, L., Chahwala, S. B., Cantley, L., and Rosoff, P., 1986, Phosphoinositides, mitogenesis, and oncogenesis, in Receptor Biochemistry and Methodology. Phosphoinositides and Receptor Mechanisms (J. W. Putney, Jr., ed.), pp. 197–217, Alan R. Liss, New York.Google Scholar
  215. Whitman, M., Kaplan, D. R., Roberts, T. M., and Cantley, L., 1987, Evidence for two distinct phosphatidylinositol kinases in fibroblasts, Biochem. J. 247:165–174.PubMedGoogle Scholar
  216. Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L., 1988, Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature 332:644–646.PubMedGoogle Scholar
  217. Whitworth, P., and Kendall, D. A., 1988, Lithium selectively inhibits muscarinic receptor-stimulated inositol tetrakisphosphate accumulation in mouse cerebral cortex slices, J. Neuro-chem. 51:258–265.Google Scholar
  218. Wilson, D. B., Bross, T. E., Sherman, W. R., Berger, R. A., and Majerus, P. W., 1985, Inositol cyclic phosphates are produced by cleavage of phosphatidylphosphoinositols (polyphosphoinositides) with purified sheep seminal vesicle phospholipase C enzymes, Proc. Natl. Acad. Sci. U.S.A. 84:4013–4017.Google Scholar
  219. Wollheim, C. B., and Biden, T. J., 1986, Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RIN5F cells, J. Biol. Chem. 261:8314–8319.PubMedGoogle Scholar
  220. Wong, N. S., Barker, C. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1988, Inositol 1:2(cyclic)4,5-trisphopshate is not a major product of inositol phospholipid metabolism in vasopressin-stimulated WRKI cells, Biochem. J. 252:1–5.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Lowell E. Hokin
    • 1
  1. 1.Department of PharmacologyUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations