Infrared Laser Spectroscopy of Short-Lived Atoms and Molecules

  • Paul B. Davies


The infrared spectroscopy of free radicals and ions at Doppler limited resolution has produced impressive results over the past two decades. Initial successes in measuring the absorption spectra of transient species, primarily neutral free radicals, was due to highly sensitive techniques like Laser Magnetic Resonance (LMR), (Evenson, 1981). In infrared LMR a ro-vibrational or fine structure transition is tuned through coincidence with a fixed frequency laser line using a magnetic field. The laser sources are gas lasers using different isotopic forms of CO and CO2. The sensitivity of the technique primarily derives from an intracavity absorption configuration. Amongst the notable discoveries with LMR has been, for example, the first gas phase spectroscopy of the OF free radical, (McKellar, 1979). LMR has undergone continual development in the meantime with particular emphasis on extending the wavelength coverage of the laser. The CO laser is now line tunable from 1200 to 2100 cm −1 and from 2500 to 3800 cm−1, (Bachem et al., 1993). Nevertheless two drawbacks remain with LMR. Firstly, the transition must lie close to a laser line even at low J when the Zeeman effect is largest. Secondly, the magnetic field effects can lead to complicated Zeeman patterns — even for diatomic free radicals.


Diode Laser Transient Species Fundamental Band White Phosphorus Negative Glow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amano, T., 1992, J. Mol. Spectr. 153: 654.CrossRefGoogle Scholar
  2. Bachem, E., Dax, A., Fink, T., Weidenteller, A., Schneider. M. and Urban, W., 1993, Appt. Phys. B57: 185.CrossRefGoogle Scholar
  3. Basterechea, F. J., Davies, P. B., Smith, D. M., and Stickland, R. J., 1994, Mol. Phvs. 81: 1435.CrossRefGoogle Scholar
  4. Botschwina, P.. and Oswald, M., 1992, J. Chem. Phys. 96: 4044.CrossRefGoogle Scholar
  5. Bowring, N. J., Li, D., and Baker, J. G., 1994, Teas. Sci. Technol. 5: 1313.Google Scholar
  6. Brown, P. R.. Davies, P. B., and Johnson, S. A., 1987, Chem. Phys. Lett. 133: 239.CrossRefGoogle Scholar
  7. Butler, J. E., Kawaguchi, K., and Hirota, E., 1983, J. Mol. Spectr. 101: 161.CrossRefGoogle Scholar
  8. Cao, Y., Choi, J-H., Haas. B-M., Johnson, M. S., and Okumura, M., 1993, J. Phys. Chem. 97: 5215.CrossRefGoogle Scholar
  9. Cattell, F. C., Cavanagh, J., Cox, R. A., and Jenkin, M. E., 1986, J. Chem. Soc. Faraday II 82: 1999.CrossRefGoogle Scholar
  10. Davies, P. B., Hamilton, P. A., and Okumura, M., 1981, J. Chem. Phvs. 75: 4294.CrossRefGoogle Scholar
  11. Davies, P. B., Guest, M. A., and Johnson, S. A., 1988, J. Chem. Phvs. 88: 2884.CrossRefGoogle Scholar
  12. Davies, P. B., and Smith, D. M., 1994, J. Chem. Phvs. 100:6166.CrossRefGoogle Scholar
  13. Evenson, K. M., 1981, Disc. Faraday Soc. 71: 7.CrossRefGoogle Scholar
  14. Gudeman, S. C., Begemann, M. H., Pfaff, J., and Saykally, R. J., 1983, Phys. Rev. Lett. 50: 727.CrossRefGoogle Scholar
  15. Hamilton, P. A., 1987, J. Chem. Phys. 86:33.CrossRefGoogle Scholar
  16. Heath, J. R., and Saykally, R. J., 1991, J Chem. Phys. 94: 1724.CrossRefGoogle Scholar
  17. Herzberg. G., and Jungen, Ch., 1982, J. Chem. Phys. 77: 5876.CrossRefGoogle Scholar
  18. Kawaguchi, K., Saito, S., Hirota, E., and Ohashi, N., 1985, J. Chem. Phvs. 82: 4893.CrossRefGoogle Scholar
  19. McKellar, A. R. W., 1979, Can. J. Phys. 57: 2106.CrossRefGoogle Scholar
  20. Mollenauer, L. F., and Olson, D. H., 1975 J. Appl. Phys. 46: 3109.CrossRefGoogle Scholar
  21. Müntz, M., Schaefer, M., Schneider. M., Wells, J. S., Urban, W., Schiessel, U. and Tacke, M., 1992, Opt. Comms., 94: 551.CrossRefGoogle Scholar
  22. Oka, T., 1980. Phys. Rev. Lett. 45: 531.CrossRefGoogle Scholar
  23. Petty, J. T., and Moore, C. B., 1993, J Chem. Phys. 99: 47.CrossRefGoogle Scholar
  24. Pine, A., 1974, J. Opt. Soc. Am. 64: 1683.CrossRefGoogle Scholar
  25. Qian, H.-B., and Davies, P. B.. 1995, J Mol. Spectr. 169: 201.CrossRefGoogle Scholar
  26. Sears, T. J., Fawzy, W. M., and Johnson, P. M., 1992, J. Chem. Phvc. 97: 3996.CrossRefGoogle Scholar
  27. Sumiyoshi, Y. Tanaka, K., and Tanaka, T., 1994, Appl. Surf. S’ci. 79 /80: 471.CrossRefGoogle Scholar
  28. Van den Heuvel, F. C., and Dymanus, A., 1982, Chem. Phys. Lett. 92: 219.CrossRefGoogle Scholar
  29. Yamada, C., and Hirota, E., 1986, Phys. Rev. Lett. 56: 923.CrossRefGoogle Scholar
  30. Yamada C, Kanamori, H., Hirota, E., Nishiwaki, N., Itabashi, N., Kato, K., and Goto, T., 1989, J. Chem. Phvs. 91: 4582.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Paul B. Davies
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeEngland

Personalised recommendations