Skip to main content

Regulations of Programmed Cell Death by Interleukin-1β-Converting Enzyme Family of Proteases

  • Chapter
Intracellular Protein Catabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 389))

Abstract

Programmed cell death plays a significant role in morphogenesis and histogenesis during animal development (Hinchliffe, 1981). Well-known examples include cell death in chick limb development and during metamorphosis of the tadpole tail. In these examples, programmed cell death is directly involved in morphogenesis. Programmed cell death is also involved in the generation of specific tissues and organs including kidney (Coles et al., 1993; Koseki et al., 1992), lens epithelial cells (Ishizaki et al., 1993) and cartilage cells (Ishizaki et al, 1994). In addition, programmed cell death is also important for establishment of neural and immune system. During neural development, as much as 50% of originally generated neurons die (Cowan 1984; Hamburger and Oppenheim, 1982; Oppenheim, 1991). In the immune system, cell death occurs constantly to eliminate cells that may react against self-antigens (Duvall and Wyllie 1986; Cohen et al., 1992). Thus, programmed cell death during animal development may be as important as cell proliferation, growth and differentiation. Abnormally controlled programmed cell death may be underlaying causes of many diseases including neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Black, R.A., Kronheim, S.R., and Sleath, RR., 1989, Activation of interleukin-1ß by a co-induced protease, FEBS Lett. 247:386–390.

    Article  PubMed  CAS  Google Scholar 

  • Bleackley, R.C., Lobe, CG., Duggan, B., Ehrman, N., Fregeau, C, Meier, M., Letellier, M., Havele, C, Shaw, J., and Paetkau, V, 1988, The isolation and characterization of a family of serine protease genesexpressed in activated cytotoxic T-lymphocytes, Immunol. Rev. 103:5–19.

    Article  PubMed  CAS  Google Scholar 

  • Boise, L.H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T, Turka, L.A., Mao, X., Nunez, G., and Thompson, C.B., 1993, bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74:597–608.

    Article  PubMed  CAS  Google Scholar 

  • Casciola-Rosen, L. A., Miller, D. K., Anhalt, G. J., and Rosen, A., 1994, Specific cleavage of the 70-kDa protein component of the Ul small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J. Biol. Chem. 269:30757–30760.

    PubMed  CAS  Google Scholar 

  • Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Ness, K.V., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T, Cannizzaro, L.A., Huebner, K., and Black, R.A., 1992, Molecular cloning of the interleukin-1ß converting enzyme, Science 256:97–100.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.J., Duke, R.C., Fadock, V.A., and Sellins, K.S., 1992, Apoptosis and programmed cell death in immunity, Annu. Rev. Immunol. 9:243–269.

    Article  Google Scholar 

  • Coles, H.S.R., Burne, J.F., and Raff, M.C, 1993, Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor, Development 118:777–784.

    PubMed  CAS  Google Scholar 

  • Cowan, W.M., 1984, Regressive events in neurogenesis, Science 225: 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Darmon, A. J., Ehrman, N., Caputo, A., Fujinaga, J., and Bleackley, R. C., 1994, The cytotoxic T cell proteinase granzyme B does not activate interleukin-1 ß-converting enzyme, J. Biol. Chem., 269:32043–32046.

    Google Scholar 

  • Duvall, E., and Wyllie, A.H., 1986, Death and the cell. Immunol. Today 7:115–119.

    Article  CAS  Google Scholar 

  • Ellis, H.M., and Horvitz, H.R., 1986, Genetic control of programmed cell death in the nematode C. elegans, Cell 44:817–829.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.E., Yuan, J., and Horvitz, H.R., 1991, Mechanisms and functions of cell death, Annu. Rev. Cell Biol. 7:663–698.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, P-A., Rotello, R., Rangini, Z., Doupe, A., Drexler. H. C. A., and Yuan, J., 1994, Expression of a specific marker of avian programmed cell death in both apoptosis and necrosis, Proc. Natl. Acad. Sci. USA. 91:8641–8645.

    Article  CAS  Google Scholar 

  • Fernandes-Alnemri, T, Litwack, G., and Alnemri, E. S., 1994, CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein ced-3 and mammalian interleukin-1ß-converting enzyme, J. Biol. Chem., 269:30761–30764.

    PubMed  CAS  Google Scholar 

  • Fontana, A. F., Kristensen, F., Duds, R., Gemsa, D., and Weber, E., 1982, Production of prostagrandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells, J. Immunol. 129:2413–2419.

    PubMed  CAS  Google Scholar 

  • Forloni, G., Demicheli, F., Bendotti, C, and Angeretti, N., 1992, Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1, Mol. Brain Res. 16:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Freiden, M., Bennett, M. V. L., and Kessler, J. A., 1992, Cultured sympathetic neurons synthesize and release the cytokine interleukin lß, Proc. Natl. Acad. Sci. USA. 89:10440–10443.

    Article  Google Scholar 

  • Gagliardini, V., Fernandez, P.-A., Lee, R.K.K., Drexler, H.C., Rotello, R.J., Fishman, M.C, and Yuan, J., 1994, Prevention of vertebrate neuronal death by the crmA gene, Science 263:826–828.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., Baker, T. J., Shih, L. N., and Lachman, L. B., 1986, Interleukin 1 of the central nervous system is produced by ameboid microglia, J. Exp. Med. 164:594–604.

    Article  PubMed  CAS  Google Scholar 

  • Glücksmann, A., 1951, Cell deaths in normal vertebrate ontogeny, Biol. Rev. Cambridge Philos. Soc. 26:59–86.

    Article  Google Scholar 

  • Griffin, W.S.T., Sranley, L.C., Ling, C, White, L., MacLeod, V, Perrot, L.J., White, C.L.I., and Araoz, C, 1989, Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease, Proc. Natl. Acad. Sci. USA. 86:7611–7615.

    Article  CAS  Google Scholar 

  • Hamburger, V., and Oppenheim, R.W, 1982, Naturally occuring cell death in vertebrates, Neurosci. Comment 1:39–55.

    Google Scholar 

  • Hengartner, M., Ellis, R.E., and Horvitz, H.R., 1992, Caenorhabditis elegans gene ced-9 protects cells from programmed cell death, Nature 356:494–499.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.O., and Horvitz, H.R., 1994, C. elegans cell survival gene ced-9 encode a functional homolog of the mammalian proto-oncogene bcl-2, Cell 76: 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Heusel, J.W., Wesselschmidt, R.L., Shresta, S., Russell, J.H., and Ley, T.J., 1994, Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells, Cell 76:977–987.

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe, J.R., 1981, Cell death in embryogenesis. In “Cell death in biology and pathology” (I. D. Brown and R. A. Lockshin, ed.), Chapman and Hall, London.

    Google Scholar 

  • Hogoquist, K.A., Nett, M.A., Unanue, E.R., and Caplin, D.D., 1991, Interleukin 1 is processed and released during apoptosis, Proc. Natl. Acad. Sci. USA. 88:8485–8489.

    Article  Google Scholar 

  • Horvitz, H.R., Ellis, H.M., and Sternberg, P.W., 1982, Programmed cell death in nematode development, Neurosci. Comment 1:56–65.

    Google Scholar 

  • Ishizaki, Y., Voyvodic, J.T., Burne, J.F., and Raff, M.C., 1993, Control of lens epithelial cell survival, J. Cell Biol. 121:899–908.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki, Y., Burne, J.F., and Raff, M., 1994, Autocrine signals enable chondrocytes to survive in culture, J. Cell Biol. 126:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Jenne, D., and Tschopp, J., 1988, Granzymes, a family of serine proteases released from granules of cytolytic T-lymphocytes upon T-cell receptor stimulation, Immunol. Rev. 103:53–71.

    Article  PubMed  CAS  Google Scholar 

  • Komiyama, T., Ray, C. A., Pickup, D. J., Howard, A. D., Thornberry, N. A., Peterson, E. P., and Salvesen, G., 1994, Inhibition of interleulin-1ß converting enzyme by the cowpox virus serpin crm A: an example of cross-class inhibition, J. Biol. Chem. 269:19331–19337.

    PubMed  CAS  Google Scholar 

  • Koseki, C, Herzlinger, D., and Al-Awqati, Q., 1992, Apoptosis in metanephric development, J. Cell Biol. 119:1327–1333.

    Article  PubMed  CAS  Google Scholar 

  • Kostura, M.J., Tocci, M.J., Limjuco, G., Chin, J., Cameron, P., Hillman, A.G., Chartrain, N.A., and Schmidt, J.A., 1989, Identification of a monocyte specific pre-interleukin-lß convertase activity, Proc. Natl. Acad. Sci. USA. 86:5227–5231.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Tomooka, Y., and Nöda, M., 1992, Identification of a set of genes with developmentally down-regulated expression in the mouse brain, Biochem. Biophys. Res. Commun. 185:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Kinoshita, M., Nöda, M., Copeland, N.G., and Jenkins, N.A., 1994, Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1ß-converting enzyme, Genes Dev. 8:1613–1626.

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., and Earnshaw, W.C., 1994, Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371:346–347.

    Article  PubMed  CAS  Google Scholar 

  • Miura, M., Zhu, H., Rotello, R., Hartwieg, E., and Yuan, J., 1993, Induction of apoptosis in fibroblasts by IL-1ß-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R.W., 1991, Cell death during development of the nervous system, Annu. Rev. Neurosci. 14:453–501.

    Article  PubMed  CAS  Google Scholar 

  • Ray, C.A., Black, R.A., Kronheim, S.R., Greenstreet, T.A., Sleath, PR., Salvesen, G.S., and Pickup, D.J., 1992, Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-lß converting enzyme, Cell 69:597–604.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.C., 1994, Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, A.M.G., and Thomson, J.N., 1982, Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae, J. Embryol. Exp. Morph. 67:89–100.

    Google Scholar 

  • Rotello, R.J. Fernandez, P.-A., and Yuan, J., 1994, Anti-apogens and anti-engulfens: monoclonal antibodies reveal specific antigenes on apoptotic and engulfment cells during chicken embryonic development, Development. 120:1421–1431.

    PubMed  CAS  Google Scholar 

  • Shi, L., Kraut, R.P., Aebersold, R., and Greenberg, A.H., 1992a, A natural killer cell granule protein that induce DNA fragmentation and apoptosis, J. Exp. Med. 175:553–566.

    Article  PubMed  CAS  Google Scholar 

  • Shi, L., Kam, C.-M., Powers, J.C., Aebersold, R., and Greenberg, A.H., 1992b, Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions, J. Exp. Med. 176: 1521–1529.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J.E., and Horvitz, H.R., 1977, Post-embryonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol. 56:110–156.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100:64–119.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.-F, Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O., C„ Raju, S.M., Rolando, A.M., J.P., S., Yamin, T.-T., Lee, T.D., Shively, J.E., MacCross, M., Mumford, R.A., Schmidt, J.A., and Tocci, M.J., 1992, A novel heterodimeric cysteine protease is required for interleukin -1ß processing in monocytes, Nature 356:768–774.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L., Weissman, I.L., and Kim, S.K., 1992, Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2, Science 258:1955–1957.

    Article  PubMed  CAS  Google Scholar 

  • Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Bump, N.J., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hammiii, L.D., Herzog, L., Hugunin, M., Houy, W., Mankovich, J.A., McGuiness, L., Orlewicz, E., Paskind, M., Pratt, CA., Reis, P., Summani, A., Terranova, M., Welch, J.P., Xiong, L., Moller, A., Tracey, D.E., Kamen, R., and Wong, W.W., 1994, Crystal structure of the cysteine protease interleukin-1ß-converting enzyme: a (p20/pl0)2 homodimer, Cell 78:343–352.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J., 1994, Ich-I, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death, Cell 78:739–750.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, K.P., Black, J-A.F., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A., and Livingston, D.J., 1994, Structure and mechanism of interleukin-lß converting enzyme, Nature 370:270–275.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H., 1981, Cell death: a new classification separating apoptosis from necrosis. In “Cell death in biology and pathology.”(I. D. Brown and R. A. Lockshin, ed.), Chapman and Hall, London.

    Google Scholar 

  • Yuan, J., and Horvitz, H.R.,1990, The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death, Dev. Biol. 138:33–41.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J., and Horvitz, H.R., 1992, The Caenorharbditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive cell programmed cell death, Development 116:309–320.

    PubMed  CAS  Google Scholar 

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R., 1993, The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-lß converting enzyme, Cell 75:641–652.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Miura, M., Yuan, J. (1996). Regulations of Programmed Cell Death by Interleukin-1β-Converting Enzyme Family of Proteases. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics