Skip to main content

What Determines Cardiac Oxygen Consumption and How is it Regulated?

  • Chapter
Book cover Oxygen Transport to Tissue XVII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 388))

  • 238 Accesses

Abstract

Tight regulation of cardiac oxidative phosphorylation to ensure fast and accurate adaptation to myocardial metabolic demand is of vital importance. There has been much discussion during the last decade on the nature of the signals that stimulate the mitochondria in the heart muscle to increase mitochondrial ATP synthesis when the workload to the heart is increased. The classic view is that ADP, the direct product of ATP hydrolysis, stimulates the mitochondria to increase ATP synthesis when muscle work increases. This is very likely correct in skeletal muscle but was challenged for cardiac muscle tissue (Balaban et al., 1986). Here we will review recent data that throw new light on this issue. We will particularly consider what happens in the first minute during the dynamic adaptation of ATP synthesis to a sudden change in workload to the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashruf, J.F., Coremans, J.M.C.C., Bruining, H.A., and Ince, C, 1995 Increase of cardiac work is associated with decrease of mitochondrial NADH in the Langendorff rat heart, Am. J. Physiol 269:H856–H862.

    PubMed  CAS  Google Scholar 

  • Balaban, R.S., 1990, Regulation of oxidative phosphorylation in the mammalian cell, Am. J. Physiol. 258:C377–C389.

    PubMed  CAS  Google Scholar 

  • Balaban, R.S., and Heineman, F.W., 1989, Interaction of oxidative phosphorylation and work in the heart, in vivo, News in Physiological Sciences 4:215–218.

    CAS  Google Scholar 

  • Balaban, R.S., Kantor, H.L., Katz, L.A., and Briggs, R.W., 1986, Relation between work and phosphate metabolites and oxygen consumption in the in vivo paced mammalian heart, Science 232:1121–1123.

    Article  PubMed  CAS  Google Scholar 

  • Beek, J.H.G.M. van, and Westerhof, N., 1991, Response time of cardiac mitochondrial oxygen consumption to heart rate steps, Am J. Physiol. 260: H613–H625.

    PubMed  Google Scholar 

  • Beek, J.H.G.M. van, Hak, J.B., and Eijgelshoven, M.H.J., 1992, Oxidative phosphorylation in the myocardium may be strongly stimulated by undetectably small changes in high-energy phosphates, Pflügers Arch. 420: R105.

    Google Scholar 

  • Chance, B., 1965, The energy-linked reaction of calcium with mitochondria, J. Biol. Chem. 240: 2729–2748.

    PubMed  CAS  Google Scholar 

  • Chance, B., and Williams, G.R., 1956, The respiratory chain and oxidative phosphorylation, Adv. Enzymol. 17:65–134.

    CAS  Google Scholar 

  • Eijgelshoven, M.H.J., Hak, J.B., Beek, J.H.G.M. van, and Westerhof, N., 1993, Adaptation speed of cardiac mitochondrial oxygen consumption decreases with higher heart rate, Am. J. Physiol. 265:H 1893–H1898.

    PubMed  CAS  Google Scholar 

  • Eijgelshoven, M.H.J., Beek, J.H.G.M. van, Mottet, I., Nederhoff, M.G.J., Echteid, C.J.A. van, and Westerhof, N., 1994, Cardiac high-energy phosphates adapt faster than oxygen consumption to changes in heart rate, Circ. Res. 75: 751–759.

    PubMed  CAS  Google Scholar 

  • Hak, J.B., Beek, J.H.G.M. van, Wijhe, M.H. van, and Westerhof, N., 1992, Influence of temperature on the response time of mitochondrial oxygen consumption in isolated rabbit heart, J. Physiol. (Lond) 447:17–31.

    CAS  Google Scholar 

  • Hak, J.B., Beek, J.H.G.M. van, and Westerhof, N., 1993a, Acidosis slows the response of oxidative phosphorylation to metabolic demand in isolated rabbit heart, Pflügers Arch. 423:324–329.

    Article  PubMed  CAS  Google Scholar 

  • Hak, J.B., Beek, J.H.G.M. van, Eijgelshoven, M.H. J., and Westerhof, N., 1993b, Mitochondrial dehydrogenase activity affects adaptation of cardiac oxygen consumption to demand, Am. J. Physiol. 264:H448–H453.

    PubMed  CAS  Google Scholar 

  • Hak, J.B., Beek, J.H.G.M. van, Wijhe, M.H. van, Eijgelshoven, M.H.J., and Westerhof, N., 1993c, Reduced cardiac ATP-synthetic capacity slows metabolic regulation and reduces contractility, In: J.B. Hak, Dynamics of Myocardial Oxidative Phosphorylation, Thesis, Vrije Universiteit, Amsterdam, the Netherlands. ISBN: 90-9005935-0.

    Google Scholar 

  • Hak, J.B., Beek, J.H.G.M. van, Wijhe, M.H. van, and Westerhof, N., 1993d, Dynamics of myocardial lactate efflux after a step in heart rate in isolated rabbit heart, Am. J. Physiol. 265:H2081–H2085.

    PubMed  CAS  Google Scholar 

  • Harris, D.A, and Das, A.M., 1991, Control of mitochondrial ATP synthesis in the heart, Biochem. J. 280: 561–573.

    PubMed  CAS  Google Scholar 

  • Heineman, F.W, and Balaban, R.S., 1990, Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo, J. Clin. Invest. 85:843–852.

    Article  PubMed  CAS  Google Scholar 

  • Heineman, F.W, and Balaban, R.S., 1993, Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart., Am. J. Physiol. 264:H433–H440.

    PubMed  CAS  Google Scholar 

  • Heinrich, R., and Rapoport, T.A., 1975, Mathematical analysis of multienzyme systems: II. Steady state and transient control, Biosystems 7:130–136.

    CAS  Google Scholar 

  • Kacser, H., and Burns, J.A., 1979, Molecular democracy: who shares the controls? Biochem. Soc. Trans. 7:1149–1160.

    PubMed  CAS  Google Scholar 

  • Kentish, J.C., 1986, The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J Physiol (Lond) 370:585–604.

    CAS  Google Scholar 

  • Massie, B.M., Schwartz, G.G., Garcia, J., Wisnewki, J.A., Weiner, M.W., and Owens, T., 1994, Myocardial metabolism during increased work states in the porcine left ventricle in vivo, Circ. Res. 74:64–73.

    PubMed  CAS  Google Scholar 

  • Meyer, R.A., 1988, A linear model of muscle respiration explains monoexponential phosphocreatine changes, Am J.Physiol. 254:C548–C553.

    PubMed  CAS  Google Scholar 

  • Rooke, G.A., and Feigl, E.O., 1982, Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting, Circ. Res. 50:273–286.

    PubMed  CAS  Google Scholar 

  • Scholz, T.D., and Balaban, R.S., 1994, Mitochondrial Fl-ATPase activity of canine myocardium: effects of hypoxia and stimulation, Am J.Physiol. 266: H2396–H2403.

    PubMed  CAS  Google Scholar 

  • Suga, H., 1979, Total mechanical energy of a ventricle model and cardiac oxygen consumption, Am J.Physiol. 236: H498–H505.

    PubMed  CAS  Google Scholar 

  • Westerhoff, H.V., and Dam K. van, 1987, Thermodynamics and control of biological free-energy transduction, Elsevier, Amsterdam, the Netherlands, pp 162–186 and pp 436–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

van Beek, J.H.G.M., Tian, X. (1996). What Determines Cardiac Oxygen Consumption and How is it Regulated?. In: Ince, C., Kesecioglu, J., Telci, L., Akpir, K. (eds) Oxygen Transport to Tissue XVII. Advances in Experimental Medicine and Biology, vol 388. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0333-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0333-6_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8002-3

  • Online ISBN: 978-1-4613-0333-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics