Introduction to Nonlinear Elasticity

  • M. F. Beatty
Part of the Mathematical Concepts and Methods in Science and Engineering book series (MCSENG, volume 45)

Abstract

This is an introductory survey of some selected topics in finite elasticity. Virtually no previous experience with the subject is assumed. The kinematics of finite deformation is characterized by the polar decomposition theorem; and Euler’s laws of balance and the local field equations of continuum mechanics are described. The general constitutive equation of hyperelasticity theory is deduced from a mechanical energy principle; and the implications of frame invariance and of material symmetry are presented. This leads to constitutive equations for compressible and incompressible, isotropic hyperelastic materials. Constitutive equations studied in experiments by Rivlin and Saunders (Ref. 1) for incompressible rubber materials and by Blatz and Ko (Ref. 2) for certain compressible elastomers are derived; and an equation characteristic of a class of biological tissues studied in primary experiments by Fung (Ref. 3) is discussed. Sample applications are presented for these materials. A balloon inflation experiment is described, and the physical nature of the inflation phenomenon is examined analytically in detail. Results for the different materials are compared. Two major problems of finite elasticity theory are discussed. Some results concerning Ericksen’s problem on controllable deformations possible in every isotropic hyperelastic material are outlined; and examples are presented in illustration of Truesdell’s problem concerning analytical restrictions imposed on constitutive equations. Universal relations valid for all compressible and incompressible, isotropic materials are discussed. The nonuniversal, antiplane shear problem and related theorems are presented. Some examples of nonuniqueness, including that of a neo-Hookean cube subject to uniform loads over its faces, are described. Elastic stability criteria and their connection with uniqueness in the theory of small deformations superimposed on large deformations are introduced, and a few applications are mentioned.

Keywords

Torque Foam Rubber Flare Polyurethane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivlin, R. S., Saunders, D. W., Large Elastic Deformations of Isotropic Materials, VII, Experiments on the Deformation of Rubber, Philosophical Transactions of the Royal Society of London, Vol. A243, pp. 251–288, 1951.ADSGoogle Scholar
  2. 2.
    Blatz, P. J., Ko, W. L., Application of Finite Elasticity to the Deformation of Rubbery Materials, Transactions of the Society for Rheology, Vol. 6, pp. 223–251, 1962.CrossRefGoogle Scholar
  3. 3.
    Fung, Y. C. B., Elasticity of Soft Tissues in Simple Elongation, American Journal of Physiology, Vol. 213, pp. 1532–1544, 1967.Google Scholar
  4. 4.
    Beatty, M. F., A Lecture on some Topics in Nonlinear Elasticity and Elastic Stability, IMA Preprint No. 99, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, 1984.Google Scholar
  5. 5.
    Beatty, M. F., Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers, and Biological Tissues-with Examples, Applied Mechanics Reviews, Vol. 40, pp. 1699–1734, 1987.ADSCrossRefGoogle Scholar
  6. 6.
    Ogden, R. W., Nonlinear Elastic Deformations, John Wiley and Sons, New York, New York, 1984.MATHGoogle Scholar
  7. 7.
    Bowen, R. M., Wang, C.-C, Introduction to Vectors and Tensors, Plenum Press, New York, New York, 1976.MATHGoogle Scholar
  8. 8.
    Atkin, R. J., Fox, N., An Introduction to the Theory of Elasticity, Longman Group, London, England, 1980.MATHGoogle Scholar
  9. 9.
    Marsden, J. E., ,Hughes, T. J. R., Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.Google Scholar
  10. 10.
    Truesdell, C, The Elements of Continuum Mechanics, Springer-Verlag, Berlin, Germany, 1966.MATHGoogle Scholar
  11. 11.
    Truesdell, C., Noll, W., The Nonlinear Field Theories of Mechanics, Flügge’s Handbuch der Physik, Springer-Verlag, Berlin, Germany, Vol. III/3, 1965.Google Scholar
  12. 12.
    Wang, C.-C., Truesdell, C., Introduction to Rational Elasticity, Noordhoff International Publishing, Leyden, The Netherlands, 1973.MATHGoogle Scholar
  13. 13.
    Beatty, M. F., Principles of Engineering Mechanics, Vol. I, Kinematics—The Geometry of Motion, Plenum Press, New York, New York, 1986.Google Scholar
  14. 14.
    Gurtin, M. E., The Linear Theory of Elasticity, Mechanics of Solids II, Flügge’s Handbuch der Physik, Springer-Verlag, Berlin, Germany, Vol. VIa/2, pp. 1–295, 1972.Google Scholar
  15. 15.
    Gurtin, M. E., Topics in Finite Elasticity, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pennsylvania, 1981.Google Scholar
  16. 16.
    Beatty, M. F., Stalnaker, D. O., The Poisson Function of Finite Elasticity, ASME Journal of Applied Mechanics, Vol. 53, pp. 807–813, 1986.ADSMATHCrossRefGoogle Scholar
  17. 17.
    Batra, R. C., On the Coincidence of the Principal Axes of Stress and Strain in Isotropic Elastic Bodies, Letters on Applied Science, Vol. 3, pp. 435–439, 1975.ADSGoogle Scholar
  18. 18.
    Batra, R. C., Deformation Produced by a Simple Tensile Load in an Isotropic Elastic Body, Journal of Elasticity, Vol. 6, pp. 109–111, 1976.MATHCrossRefGoogle Scholar
  19. 19.
    Rivlin, R. S., Large Elastic Deformations of Isotropic Materials , II, Some Uniqueness Theorems for Pure Homogeneous Deformations, Philosophical Transactions of the Royal Society of London, Vol. A240, pp. 491–508, 1948.MathSciNetADSGoogle Scholar
  20. 20.
    Rivlin, R. S., Large Elastic Deformations of Isotropic Materials, IV, Further Developments of the General Theory, Philosophical Transactions of the Royal Society of London, Vol. A241, pp. 379–397, 1948.MathSciNetADSGoogle Scholar
  21. 21.
    Rivlin, R. S., Large Elastic Deformations of Isotropic Materials, V, The Problem of Flexure, Proceedings of the Royal Society of London, Vol. A195, pp. 463–473. 1949.MathSciNetADSGoogle Scholar
  22. 22.
    Rivlin, R. S., Large Elastic Deformations of Isotropic Materials, VI, Further Results in the Theory of Torsion, Shear and Flexure, Philosophical Transactions of the Royal Society of London, Vol. A242, pp. 173–185, 1949.MathSciNetADSGoogle Scholar
  23. 23.
    Rivlin, R. S., A Note on the Torsion of an Incompressible Highly Elastic Cylinder, Proceedings of the Cambridge Philosophical Society, Vol. 45, pp. 485–487, 1949.MathSciNetMATHCrossRefADSGoogle Scholar
  24. 24.
    Treloar, L. R. G., The Physics of Rubber Elasticity, 3rd Edition, Clarendon Press, Oxford, England, 1975.Google Scholar
  25. 25.
    Ishihara, N., Hashitsume, N., and Tatibana, M., Statistical Theory of Rubber-like Elasticity IV, Journal of Chemistry and Physics, Vol. 19, pp. 1508–1520, 1951.ADSCrossRefGoogle Scholar
  26. 26.
    Demiray, H., Stresses in Ventricular Wall, ASME Journal of Applied Mechanics, Vol. 98, pp. 194–197, 1976.ADSCrossRefGoogle Scholar
  27. 27.
    Green, A. E., Zerna, W., Theoretical Elasticity, Clarendon Press, Oxford, England, 1954.MATHGoogle Scholar
  28. 28.
    Green, A. E., Adkins, J. E., Large Elastic Deformations and Non-linear Continuum Mechanics, Clarendon Press, Oxford, England, 1960.MATHGoogle Scholar
  29. 29.
    Pipkin, A. C., Nonlinear Phenomena in Continua, Nonlinear Continuum Theories in Mechanics and Physics and their Applications, Edited by R. S. Rivlin, Centro In-ternazionale Matematico Estivo, II Ciclo-Bressanone, Italy, September 3–11, 1969, pp. 57–58, 1970.Google Scholar
  30. 30.
    Bouasse, H., Carrière, Z., Courbes de Traction du Caoutchouc Vulcanise, Annates de la Faculté des Sciences, Vol. 5, pp. 257–283, 1903.Google Scholar
  31. 31.
    Mullins, L., Effect of Stretching on the Properties of Rubber, Journal of Rubber Research, Vol. 16, pp. 275–289, 1947.Google Scholar
  32. 32.
    Harwood, J. A. C., Mullins, L., Payne, A. R., Stress Softening in Rubbers—A Review, Journal of the IRI, Vol. 1, pp. 17–27, 1967.Google Scholar
  33. 33.
    Johnson, M. A., Beatty, M. F., The Mullins Effect in Uniaxial Extension and its Influence on the Transverse Vibration of a Rubber String, Continuum Mechanics and Thermodynamics, Vol. 5, pp. 83–115, 1993.MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Johnson, M. A., Beatty, M. F., A Constitutive Equation for the Mullins Effect in Stress Controlled Uniaxial Extension Experiments, Continuum Mechanics and Thermodynamics, Vol. 5, pp. 301–318, 1993.MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Johnson, M., Beatty, M. F., The Mullins Effect in Equibiaxial Extension and its Influence on the Inflation of a Balloon, International Journal of Engineering Science, Vol. 33, pp. 223–245, 1995.MATHCrossRefGoogle Scholar
  36. 36.
    Mullins, L., Tobin, N. R., Stress Softening in Rubber Vulcanizates, Part I, Journal of Polymer Science, Vol. 9, pp. 2993–3009, 1965.Google Scholar
  37. 37.
    Bueche, F., Molecular Basis for the Mullins Effect, Journal of Applied Polymer Science, Vol. 4, pp. 108–114, 1960.Google Scholar
  38. 38.
    Harwood, J. A. C., Mullins, L., Payne, A. R., Stress Softening in Natural Rubber Vulcanizates, Part II: Stress Softening Effects in Pure Gum and Filler Loaded Rubbers, Journal of Applied Polymer Science, Vol. 9, pp. 3011–3021, 1965.Google Scholar
  39. 39.
    Govindjee, S., Simo, J., A Micro-Mechanically Based Continuum Damage Model for Carbon Black Filled Rubbers Incorporating the Mullins Effect, Journal of the Mechanics and Physics of Solids, Vol. 39, pp. 87–112, 1991.MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Govindjee, S., Simo, J., Transition from Micro-Mechanics to Computationally Efficient Phenomenology: Carbon Black Filled Rubbers Incorporating Mullins’ Effect, Journal of the Mechanics and Physics of Solids, Vol. 40, pp. 213–233, 1992.ADSMATHCrossRefGoogle Scholar
  41. 41.
    Bueche, F., Mullins Effect and Rubber-Filled Interaction, Journal of Applied Polymer Science, Vol. 5, pp. 271–281, 1961.CrossRefGoogle Scholar
  42. 42.
    James, H. M., Guth, E., Theory of the Elastic Properties of Rubber, Journal of Chemistry and Physics, Vol. 11, pp. 455–481, 1943.ADSCrossRefGoogle Scholar
  43. 43.
    Bell, J. F., Continuum Plasticity at Finite Strain for Stress Paths of Arbitrary Composition and Direction, Archive for Rational Mechanics and Analysis, Vol. 84, pp. 139–170, 1983.ADSMATHCrossRefGoogle Scholar
  44. 44.
    Bell, J. F., Contemporary Perspectives in Finite Strain Plasticity, International Journal of Plasticity, Vol. 1, pp. 3–27, 1985.MATHCrossRefGoogle Scholar
  45. 45.
    Beatty, M. F., Hayes, M. A., Deformations of an Elastic, Internally Constrained Material, Part I: Homogeneous Deformations, Journal of Elasticity, Vol. 29, pp. 1–84, 1992.MathSciNetMATHGoogle Scholar
  46. 46.
    Beatty, M. F., Hayes, M. A., Deformations of an Elastic, Internally Constrained Material, Part 2: Nonhomogeneous Deformations, Quarterly Journal of Mechanics, and Applied Mathematics, Vol. 45, pp. 663–709, 1992.MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Beatty, M. F., Hayes, M. A., Deformations of an Elastic, Internally Constrained Material, Part 3: Small Superimposed Deformations and Waves, Zeitschrift für angewandte Mathematik und Physik, Vol. 46, pp. S72–S106, 1995.MathSciNetMATHGoogle Scholar
  48. 48.
    Ericksen, J. L., Constitutive Theory for Some Constrained Elastic Crystals, IMA Preprint No. 132, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, 1985. Google Scholar
  49. 49.
    Beatty, M. F., Hayes, M. A., On Bell’s Constraint in Finite Elasticity, Advances in Modern Continuum Dynamics, Proceedings of the International Conference at Elba Island, June 6–11, 1991, Edited by G. Ferrarese, Pitagora Editrice, Bologna, Italy, 1993.Google Scholar
  50. 50.
    Rogers, T. G., Pipkin, A. C., Small Deflections of Fiber-Reinforced Beams or Slabs, ASME Journal of Applied Mechanics, Vol. 38, pp. 1047–1048, 1971.ADSCrossRefGoogle Scholar
  51. 51.
    Kao, B., Pipkin, A. C., Finite Buckling of Fiber-Reinforced Columns, Acta Mechanica, Vol. 13, pp. 265–280, 1972.MATHCrossRefGoogle Scholar
  52. 52.
    Schaffers, W. J., Buckling in Fiber-Reinforced Elastomers, Textile Research Journal, Vol. 47, pp. 502–512, 1977.Google Scholar
  53. 53.
    Charrier, J. M., Large Elastic Deformations of some Cord Reinforced Rubber Shells, Rubber Chemistry and Technology, Vol. 43, pp. 282–303, 1970.CrossRefGoogle Scholar
  54. 54.
    SPENCER, A. J. M., Deformations of Fibre-Reinforced Materials, Clarendon Press, Oxford, England, 1972.MATHGoogle Scholar
  55. 55.
    Pipkin, A. C., Finite Deformations in Materials Reinforced with Inextensible Cords, Finite Elasticity, Edited by R. S. Rivlin, ASME, AMD Vol. 27, pp. 91–102, 1977.Google Scholar
  56. 56.
    Pipkin, A. C., Stress Analysis of Fiber Reinforced Materials, Advances in Applied Mechanics, Vol. 19, pp. 1–51, 1979.MATHCrossRefGoogle Scholar
  57. 57.
    Ericksen, J. L., Special Topics in Elastostatics, Advances in Applied Mechanics, Vol. 17, pp. 189–244, 1977.ADSMATHCrossRefGoogle Scholar
  58. 58.
    Ericksen, J. L., Toupin, R. A., Implications of Hadamard’s Conditions for Elastic Stability with Respect to Uniqueness Theorems, Canadian Journal of Mathematics, Vol. 8, pp. 432–436, 1956.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Pearson, C. E., General Theory of Elastic Stability, Quarterly of Applied Mathematics, Vol. 14, pp. 133–144, 1955.Google Scholar
  60. 60.
    Toupin, R. A., Theories of Elasticity with Couple Stress, Archive for Rational Mechanics and Analysis, Vol. 17, pp. 85–112, 1964.MathSciNetADSMATHCrossRefGoogle Scholar
  61. 61.
    Bryan, G. H., On the Stability of Elastic Systems, Proceedings of the Cambridge Philosophical Society, Vol. 6, pp. 199–210, 287–292, 1888.Google Scholar
  62. 62.
    Hill, R., On Uniqueness and Stability in the Theory of Finite Elastic Strain, Journal of the Mechanics and Physics of Solids, Vol. 5, pp. 229–241, 1957.MathSciNetADSMATHCrossRefGoogle Scholar
  63. 63.
    Beatty, M. F., Some Static and Dynamic Implications of the General Theory of Elastic Stability, Archive for Rational Mechanics and Analysis, Vol. 19, pp. 167–188, 1965.MathSciNetADSMATHCrossRefGoogle Scholar
  64. 64.
    Beatty, M. F., A Theory of Elastic Stability for Incompressible, Hyperelastic Bodies, International Journal of Solids and Structures, Vol. 3, pp. 23–37, 1967.CrossRefGoogle Scholar
  65. 65.
    Beatty, M. F., Stability of Hyperelastic Bodies Subject to Hydrostatic Loading, International Journal for Nonlinear Mechanics, Vol. 5, pp. 367–383, 1970.ADSMATHCrossRefGoogle Scholar
  66. 66.
    Sewell, M. J., On Configuration-Dependent Loading, Archive for Rational Mechanics and Analysis, Vol. 23, pp. 327–351, 1967.MathSciNetADSMATHCrossRefGoogle Scholar
  67. 67.
    Batra, R. C., On Non-Classical Boundary Conditions, Archive for Rational Mechanics and Analysis, Vol. 48, pp. 163–191, 1972.MathSciNetADSMATHCrossRefGoogle Scholar
  68. 68.
    Gurtin, M. E., On Uniqueness in Finite Elasticity, Proceedings of the IUTAM Symposium on Finite Elasticity, Lehigh University, 1980, Edited by D. E. Carlson and R. T. Shield, Martinus Nijhoff Publishers, The Hague, The Netherlands, 1982.Google Scholar
  69. 69.
    Rivlin, R. S., Stability of Pure Homogeneous Deformations of an Elastic Cube under Dead Loading, Quarterly of Applied Mathematics, Vol. 32, pp. 265–272, 1974.MathSciNetMATHGoogle Scholar
  70. 70.
    Rivlin, R. S., Some Thoughts on Material Stability, Proceedings of the IUTAM Symposium on Finite Elasticity, Lehigh University, 1980, Edited by D. E. Carlson and R. T. Shield, Martinus Nijhoff Publishers, The Hague, The Netherlands, pp. 105–122, 1982.Google Scholar
  71. 71.
    Ericksen, J. L., Deformations Possible in every Isotropic, Incompressible, Perfectly Elastic Body, Zeitschrift für angewandte Mathematik und Physik, Vol. 5, pp. 466–489, 1954.MathSciNetADSMATHCrossRefGoogle Scholar
  72. 72.
    Ericksen, J. L., Deformations Possible in every Compressible, Isotropie, Perfectly Elastic Material, Journal of Mathematical Physics, Vol. 34, pp. 126–128, 1955.MathSciNetGoogle Scholar
  73. 73.
    Shield, R. T., Deformations Possible in Every Compressible, Isotropic, Perfectly Elastic Material, Journal of Elasticity, Vol. 1, pp. 91–92, 1971.Google Scholar
  74. 74.
    Marris, A. W., Shiau, J. F., Universal Deformations in Isotropic Incompressible Hyperelastic Materials when the Deformation Tensor has Equal Proper Values, Archive for Rational Mechanics and Analysis, Vol. 36, pp. 135–160, 1970.MathSciNetADSMATHCrossRefGoogle Scholar
  75. 75.
    Martin, S. E., and Carlson, D. E., A Note on Ericksen’s Problem, Journal of Elasticity, Vol. 6, pp. 105–108, 1976.MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Fosdick, R. L., Remarks on Compatibility, Modern Developments in the Mechanics of Continua, Proceedings of the International Conference on Rheology, Edited by S. Eskinazi, Academic Press, New York, New York, pp. 109–127, 1966.Google Scholar
  77. 77.
    Klingbeil, W., Shield, R. T., On a Class of Solutions in Plane Finite Elasticity, Zeitschrift für angewandte Mathematik und Physik, Vol. 17, pp. 489–501, 1966.MathSciNetADSCrossRefGoogle Scholar
  78. 78.
    Singh, M., Pipkin, A. C., Note on Ericksen’s Problem, Zeitschrift für angewandte Mathematik und Physik, Vol. 16, pp. 706–709, 1965.ADSCrossRefGoogle Scholar
  79. 79.
    Singh, M., Pipkin, A. C., Controllable States of Elastic Dielectrics, Archive for Rational Mechanics and Analysis, Vol. 21, pp. 169–210, 1966.MathSciNetADSMATHCrossRefGoogle Scholar
  80. 80.
    Holden, J. T., Note on a Class of Controllable Deformations of Incompressible Elastic Materials, Applied Scientific Research, Vol. 24, pp. 98–104, 1971.MATHGoogle Scholar
  81. 81.
    Huilgol, R. R., A Finite Deformation Possible in Transversely Isotropic Materials, Zeitschrift für angewandte Mathematik und Physik, Vol. 17, pp. 787–789, 1966.ADSCrossRefGoogle Scholar
  82. 82.
    Fosdick, R. L., Schuler, K. W., On Ericksen’s Problem for Plane Deformations with Uniform Transverse Stretch, International Journal of Engineering Science, Vol. 7, pp. 217–233, 1969.MATHCrossRefGoogle Scholar
  83. 83.
    Fosdick, R. L., Statically Possible Radially Symmetrie Deformations in Isotropie Incompressible Elastic Solids, Zeitschrift für angewandte Mathematik und Physik, Vol. 22, pp. 590–607, 1971.ADSMATHCrossRefGoogle Scholar
  84. 84.
    Müller, W. C., A Characterization of the Five Known Families of Solutions of Ericksen’s Problem, Archive for Applied Mechanics, Vol. 22, pp. 515–522, 1970.MATHGoogle Scholar
  85. 85.
    Müller, W. C., Some Further Results on the Ericksen Problem for Deformation with Constant Strain Invariants, Zeitschrift für angewandte Mathematik und Physik, Vol. 21, pp. 633–636, 1970.ADSMATHCrossRefGoogle Scholar
  86. 86.
    Kafadar, C. B., On Ericksen’s Problem, Archive for Rational Mechanics and Analysis, Vol. 47, pp. 15–27, 1972.MathSciNetADSMATHCrossRefGoogle Scholar
  87. 87.
    Knowles, J. K., Universal States of Finite Anti-Plane Shear, Ericksen’s Problem in Miniature, American Mathematical Monthly, Vol. 86, pp. 109–113, 1979.MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Marris, A. W., Universal Deformations in Incompressible Isotropic Elastic Materials, Journal of Elasticity, Vol. 5, pp. 111–128, 1975.MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Currie, P. K., Hayes, M., On Non-Universal Finite Elastic Deformations, Proceedings of the IUTAM Symposium on Finite Elasticity, Lehigh University, 1980, Edited by D. E. Carlson, R. T. Shield, Martinus Nijhoff Publishers, The Hague, The Netherlands, pp. 143–150, 1982.Google Scholar
  90. 90.
    Holden, J. T., A Class of Exact Solutions for Finite Plane Strain Deformations of a Particular Elastic Material, Applied Scientific Research, Vol. 19, pp. 171–181, 1968.MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Parry, G. P., Corollaries of Ericksen’s Theorems on the Deformations Possible in every Isotropic Hyperelastic Body, Archive for Applied Mechanics, Vol. 31, pp. 757–760, 1979.MATHGoogle Scholar
  92. 92.
    Ericksen, J. L., Semi-Inverse Methods in Finite Elasticity Theory, Finite Elasticity, Edited by R. S. Rivlin, ASME, AMD Vol. 27, pp. 11–21, 1977.Google Scholar
  93. Beatty, M. F., A Class of Universal Relations in Isotropic Elasticity Theory, Journal of Elasticity, Vol. 17, pp. 113–121, 1987.MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Hayes, M., Knops, R. J., On Universal Relations in Elasticity Theory, Zeitschrift für angewandte Mathematik und Physik, Vol. 17, pp. 636–639, 1966.ADSCrossRefGoogle Scholar
  95. 95.
    Truesdell, C. A., The Main Unsolved Problem in Finite Elasticity Theory, Zeitschrift für angewandte Mathematik und Physik, Vol. 36, pp. 97–103, 1956. English translation in Foundations of Elasticity Theory, Edited by C. Truesdell, International Science Review Series, Gordon and Breach, New York, New York, 1965.Google Scholar
  96. 96.
    Baker, M., Ericksen, J. L., Inequalities Restricting the Form of Stress Deformation Relations for Isotropic Elastic Solids and Reiner-Rivlin Fluids, Journal of the Washington Academy of Sciences, Vol. 44, pp. 33–35, 1954. See also Foundations of Elasticity Theory, Edited by C. Truesdell, International Science Review Series, Gordon and Breach, New York, New York, 1965.Google Scholar
  97. 97.
    Truesdell, C. A., The Mechanical Foundations of Elasticity and Fluid Dynamics, Journal of Rational Mechanics and Analysis, Vol. 1, pp. 125–300, 1952. Corrections and Additions, Ibid., Vol. 2, pp. 593–616, 1953.Google Scholar
  98. 98.
    Ericksen, J. L., On the Propagation of Waves in Isotropic, Incompressible, Perfectly Elastic Materials, Journal of Rational Mechanics and Analysis, Vol. 2, pp. 329–337, 1953.MathSciNetMATHGoogle Scholar
  99. 99.
    Antman, S.S., A Family of Semi-Inverse Problems in Nonlinear Elasticity, Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Edited by G. M. de LaPenha, L. A. Medeiros, North-Holland Publishing Company, The Netherlands, pp. 1–24, 1978.CrossRefGoogle Scholar
  100. 100.
    Antman, S. S., Monotonicity and Invertibility Conditions in One-Dimensional Nonlinear Elasticity, Nonlinear Elasticity, Academic Press, New York, New York, pp. 57–92, 1973.Google Scholar
  101. 101.
    Antman, S. S., Regular and Singular Problems for Large Elastic Deformations of Tubes, Wedges and Cylinders, Archive for Rational Mechanics and Analysis, Vol. 83, pp. 1–52, 1983.MathSciNetADSMATHCrossRefGoogle Scholar
  102. 102.
    Ball, J. M., Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Archive for Rational Mechanics and Analysis, Vol. 63, pp. 337–403, 1977.MATHCrossRefGoogle Scholar
  103. 103.
    Ball, J. M., Constitutive Inequalities and Existence Theorems in Nonlinear Elasto-statics, Nonlinear Analysis and Mechanics I, Edited by R. J. Knops, Pitman, London, England, pp. 187–241, 1977.Google Scholar
  104. 104.
    Knowles, J. K., Sternberg, E., On the Ellipticity of the Equations of Nonlinear Elastostatics for a Special Material, Journal of Elasticity, Vol. 5, pp. 341–361, 1975.MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Knowles, J. K., Sternberg, E., On the Failure of Ellipticity of the Equations of Finite Elastostatic Plane Strain, Archive for Rational Mechanics and Analysis, Vol. 63, pp. 321–336, 1977.MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Knowles, J. K., On Finite Anti-Plane Shear for Incompressible Elastic Materials, Journal of the Australian Mathematical Society, Series B, Vol. 19, pp. 400–415, 1976.MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Knowles, J. K., A Note on Anti-Plane Shear for Compressible Materials in Finite Elastostatics, Journal of the Australian Mathematical Society, Series B, Vol. 20, pp. 1–7, 1977.MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Adkins, J. E., Some Generalizations of the Shear Problem for Isotropic Incompressible Materials, Proceedings of the Cambridge Philosophical Society, Vol. 50, pp. 334–345, 1954.MathSciNetMATHCrossRefADSGoogle Scholar
  109. 109.
    Polignone, D. A., Horgan, C. O., Axisymmetric Finite Anti-Plane Shear of Compressible Nonlinearly Elastic Circular Tubes, Quarterly of Applied Mathematics, Vol. 50, pp. 323–341, 1992.MathSciNetMATHGoogle Scholar
  110. 110.
    Beatty, M. F., Khan, R. A., Finite Amplitude, Free Vibrations of an Axisymmetric Load Supported by a Highly Elastic Tubular Shear Spring, Journal of Elasticity, Vol. 37, pp. 179–242, 1995.MATHGoogle Scholar
  111. 111.
    Jiang, Q., Beatty, M. F., On Compressible Materials Capable of Sustaining Axisymmetric Shear Deformations, Part 1: Anti-Plane Shear of Isotropic Hyperelastic Materials, Journal of Elasticity, Vol. 39, pp. 75–95, 1995.MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Tsai, H., Rosakis, P., On Anisotropic Compressible Materials that can Sustain Elastodynamic Anti-Plane Shear, Journal of Elasticity, Vol. 35, pp. 213–222, 1994.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Dunn, J. E., Certain A Priori Inequalities and a Peculiar Elastic Material, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 36, pp. 351–363, 1983.MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Rivlin, R. S., Some Restrictions on Constitutive Equations, Proceedings of the International Symposium on the Foundations of Continuum Thermodynamics, Bas-saco, Italy, 1973.Google Scholar
  115. 115.
    Knops, R. J., Wilkes, E. W., Theory of Elastic Stability, Flügge’s Handbuch der Physik, Springer-Verlag, Berlin, Germany, Vol. VIa/3, pp. 125–302, 1973.Google Scholar
  116. 116.
    Leipholz, H., Stability Theory, Academic Press, New York, New York, pp. 176–270, 1970.MATHGoogle Scholar
  117. 117.
    Bolotin, V. V., Nonconservative Problems of the Theory of Elastic Stability, Macmillan Co., New York, New York, 1963.MATHGoogle Scholar
  118. 118.
    Zeigler, H., Principles of Structural Stability, Blaisdell Publishing Company, Waltham, Massachusetts, 1968.Google Scholar
  119. 119.
    Antman, S. S., The Eversion of Thick Spherical Shells, Archive for Rational Mechanics and Analysis, Vol. 70, pp. 113–123, 1979.MathSciNetADSMATHCrossRefGoogle Scholar
  120. 120.
    Gurtin, M. E., Spector, S. J., On Stability and Uniqueness in Finite Elasticity, Archive for Rational Mechanics and Analysis, Vol. 70, pp. 153–165, 1979.MathSciNetADSMATHCrossRefGoogle Scholar
  121. 121.
    Spector, S. J., On Uniqueness in Finite Elasticity with General Loading, Journal of Elasticity, Vol. 10, pp. 145–161, 1980.MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    Spector, S. J., On Uniqueness for the Traction Problem in Finite Elasticity, Journal of Elasticity, Vol. 12, pp. 367–383, 1982.MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Truesdell, C., Toupin, R. A., Static Grounds for Inequalities in Finite Strainof Elastic Materials, Archive for Rational Mechanics and Analysis, Vol. 12, pp. 1–33, 1963.MathSciNetADSGoogle Scholar
  124. 124.
    Krawietz, A., A Comprehensive Inequality in Finite Elastic Strain, Archive for Rational Mechanics and Analysis, Vol. 58, pp. 127–149, 1975.MathSciNetADSMATHCrossRefGoogle Scholar
  125. 125.
    Usmani, S. A., Beatty, M. F., On the Surface Instability of a Highly Elastic Half Space, Journal of Elasticity, Vol. 4, pp. 249–263, 1974.CrossRefGoogle Scholar
  126. 126.
    Gent, A. N., Rubber Elasticity: Basic Concepts and Behavior, Chapter 1 in Science and Technology of Rubber, Academic Press, New York, New York, 1978.Google Scholar
  127. 127.
    Hutchinson, J. W., Neale, K. W., Neck Propagation, Journal of Mechanics and Physics of Solids, Vol. 31, pp. 405–426, 1983.ADSMATHCrossRefGoogle Scholar
  128. 128.
    Chater, E., Hutchinson, J. W., On the Propagation of Bulges and Buckles, Journal of Applied Mechanics, Vol. 51, pp. 269–277, 1984.ADSCrossRefGoogle Scholar
  129. 129.
    Sawyers, K. N., Stability of an Elastic Cube under Dead Load: Two Equal Forces, International Journal of Nonlinear Mechanics, Vol. 11, pp. 11–23, 1976.ADSMATHCrossRefGoogle Scholar
  130. 130.
    Ball, J. M., Schaeffer, D., Bifurcation and Stability of Homogeneous Equilibrium Configurations of an Elastic Body under Dead Load Tractions, Proceedings of the Cambridge Philosophical Society, Vol. 94, pp. 315–340, 1983.MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Tabaddor, F, Rubber Elasticity Models for Finite Element Analysis, Computers and Structures, Vol. 26, pp. 33–40, 1987.MATHCrossRefGoogle Scholar
  132. 132.
    Treloar, L. R. G., Stresses and Birefringence in Rubber Subjected to General Homogeneous Strain, Proceedings of the Physical Society, Vol. 60, pp. 135–142, 1948.ADSCrossRefGoogle Scholar
  133. 133.
    Kearsley, E. A., Asymmetric Stretching of a Symmetrically Loaded Elastic Sheet, International Journal of Solids and Structures, Vol. 22, pp. 111–119, 1986.CrossRefGoogle Scholar
  134. 134.
    MacSithigh, G. P., Energy-Minimal Finite Deformations of a Symmetrically Loaded Elastic Sheet, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 39, pp. 111–123, 1986.MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Tabaddor, F, Elastic Stability of Rubber Products, Rubber Chemistry and Technology, Vol. 60, pp. 957–965, 1987.CrossRefGoogle Scholar
  136. 136.
    Beatty, M. F., Elastic Stability of Rubber Bodies in Compression, Finite Elasticity, Edited by R. S. Rivlin, ASME, AMD Vol. 27, pp. 125–150, 1977.Google Scholar
  137. 137.
    Willis, A. H., Instability in Hollow Rubber Cylinders Subjected to Axial Loads, VII International Congress of Applied Mechanics, London, England, Vol. 1, pp. 280–296, 1948.Google Scholar
  138. 138.
    Payne, A. R., Scott, J. R., Engineering Design with Rubber, Interscience Publishers, New York, New York, Chapter 6, 1960.Google Scholar
  139. 139.
    Knowles, J. K., Large Amplitude Oscillations of a Tube of Incompressible Elastic Material, Quarterly of Applied Mathematics, Vol. 18, pp. 71–77, 1960.MathSciNetMATHGoogle Scholar
  140. 140.
    Knowles, J. K., On a Class of Oscillations in the Finite Deformation Theory of Elasticity, ASME Journal of Applied Mechanics, Vol. 29, pp. 283–286, 1962.MathSciNetMATHGoogle Scholar
  141. 141.
    Truesdell, C., Solutio Generalis et Accurata Problematum Quamplurimorum de moto Corporum Elasticorum Incomprimibilium in Deformationibus Valde Magnis, Archive for Rational Mechanics and Analysis, Vol. 11, pp. 106–113. 1962. Adendum, Ibid, Vol. 12, pp. 427–428, 1963. See also Truesdell and Noll, Ref. 11, Section 61; and Wang and Truesdell, Ref. 12, pp. 315–341.Google Scholar
  142. 141.
    Wang, C.-C, On the Radial Oscillations of a Spherical Thin Shell in Finite Elasticity Theory, Quarterly of Applied Mathematics, Vol. 23, pp. 270–274, 1965.Google Scholar
  143. 143.
    Shahinpoor, M., Nowinski, J. L., Exact Solution to the Problem of Forced Large Amplitude Radial Oscillations of a Thin Hyperelastic Tube, International Journal for Nonlinear Mechanics, Vol. 6, pp. 193–207, 1971.ADSMATHCrossRefGoogle Scholar
  144. 144.
    Rogers, C, Baker, J. A., The Finite Elastodynamics of Hyperelastic Thin Tubes, International Journal for Nonlinear Mechanics, Vol. 15, pp. 225–233, 1980.MathSciNetADSGoogle Scholar
  145. 145.
    Eringen, A. C., and Suhubi, E. S., Elastodynamics, Vol. 1, Finite Motions, Academic Press, New York, New York, 1974.MATHGoogle Scholar
  146. 144.
    Beatty, M. F., Finite Amplitude Oscillations of a Simple Rubber Support System, Archive for Rational Mechanics and Analysis, Vol. 83, pp. 195–219, 1983.MathSciNetADSMATHCrossRefGoogle Scholar
  147. 147.
    Beatty, M. F., Finite Amplitude Vibrations of a Body Supported by Simple Shear Springs, ASME Journal of Applied Mechanics, Vol. 51, pp. 361–366, 1984.ADSMATHCrossRefGoogle Scholar
  148. 148.
    Beatty, M. F., Finite Amplitude Vibrations of a Neo-Hookean Oscillator, Quarterly of Applied Mathematics, Vol. 44, pp. 19–34, 1986.MathSciNetMATHGoogle Scholar
  149. 149.
    Beatty, M. F., Chow, A. C., Free Vibrations of a Loaded Rubber String, International Journal for Nonlinear Mechanics, Vol. 19, pp. 69–81, 1984.ADSMATHCrossRefGoogle Scholar
  150. 150.
    Beatty, M. F., Chow, A. C., On the Transverse Vibration of a Rubber String, Journal of Elasticity, Vol. 13, pp. 317–344, 1983.MATHCrossRefGoogle Scholar
  151. 151.
    Baker, T. J., The Frequency of Transverse Vibrations of a Stretched India Rubber Cord, Philosophical Magazine, Vol. 49, pp. 347–351, 1900.Google Scholar
  152. 152.
    Von Lang, V., Ueber Transversale Töne von Kaulschuk-fäden, Annalen der Physik und Chemie, Vol. 68, pp. 335–342, 1899.ADSCrossRefGoogle Scholar
  153. 153.
    Chen, P. J., Selected Topics in Wave Propagation, Noordhoff International Publishers, Leyden, The Netherlands, 1976.MATHGoogle Scholar
  154. 154.
    Ericksen, J. L., Introduction to the Thermodynamics of Solids, Chapman and Hall, London, England, 1991.MATHGoogle Scholar
  155. 155.
    Lee, S. J., Shield, R. T., Variational Principles in Finite Elastostatics, Zeitschrift für angewandte Mathematik und Physik, Vol. 31, pp. 437–72, 1980.MathSciNetADSMATHCrossRefGoogle Scholar
  156. 156.
    Shield, R. T., Equilibrium Solutions in Finite Elasticity, ASME Journal of Applied Mechanics, Vol. 50, pp. 1171–1180, 1983.ADSMATHCrossRefGoogle Scholar
  157. 157.
    Rivlin, R. S., Editor, Finite Elasticity, ASME, AMD Vol. 27, New York, New York, 1977.Google Scholar
  158. 158.
    Carlson, D. E., Shield, R. T., Editors, Finite Elasticity, Proceedings of the IUTAM Symposium on Finite Elasticity, Lehigh University, 1980, Martinus Nijhoff Publishers, The Hague, The Netherlands, 1982.MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. F. Beatty
    • 1
  1. 1.Department of Engineering MechanicsUniversity of Nebraska at LincolnLincolnUSA

Personalised recommendations