Skip to main content

Koksma’s Inequality and Group Extensions of Kronecker Transformations

  • Chapter

Abstract

We consider methods of establishing ergodicity of group extensions, proving that a class of cylinder flows are ergodic, coalescent and non-squashable. A new Koksma-type inequality is also obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. d’Analyse Math., 39, (1981), 203–234.

    Article  MathSciNet  MATH  Google Scholar 

  2. The intrinsic normalising constants of transformations preserving infinite measures, J. d’Analyse Math., 49, (1987), 239–270.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Bagget, K. Merrill Smooth cocycles for an irrational rotation, preprint.

    Google Scholar 

  4. L. Bagget, K. Merrill, On the cohomological equation of a class of functions under irrational rotation of bounded type, preprint.

    Google Scholar 

  5. J.P.Conze, Ergodicite d’un flot cylindrique, Bull. Soc. Mat. de France, 108, (1980), 441–456.

    MathSciNet  MATH  Google Scholar 

  6. H.Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math., 83, (1961), 573–601.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Mat. IHES, 49, (1979), 5–234.

    MathSciNet  MATH  Google Scholar 

  8. P.Hellekalek, G.Larcher, On ergodicity of a class of skew products, Israel J. Math., 54, (1986), 301–306.

    MathSciNet  MATH  Google Scholar 

  9. P.Hellekalek, G.Larcher, On Weyl sums and skew products over irrational rotations, Th. Comp. Sc., Fund. St., 65, (1989), 189–196.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.B. Katok, Constructions in Ergodic Theory, preprint.

    Google Scholar 

  11. Y. Katznelson, An Introduction to Harmonic Analysis, Dover Publ. INC., New York (1967).

    Google Scholar 

  12. A. Krygin, Examples of ergodic cascades, Math. Notes USSR, 16, (1974), 1180–1186.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Kwiatkowski, M. Lemańczyk, D. Rudolph, Weak isomorphisms of measure-preserving diffeomorphisms, Israel J. Math. (1992), 33–64

    Google Scholar 

  14. J. Kwiatkowski, M. Lemańczyk, D. Rudolph, A class of real cocycles having an analytic coboundary modification, preprint.

    Google Scholar 

  15. L.Kuipers, H.Niederreiter, Uniform Distribution of Sequences, Wiley,(1974).

    Google Scholar 

  16. M. Lemanczyk, Ch. Mauduit, Ergodicity of a class of cocycles over irrational rotations, Bull. London Math. Soc., to appear.

    Google Scholar 

  17. I. Oren, Erdodicity of cylinder flows arising from irregularities of distribution, Israel J. Math., 44, (1983), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  18. D.A. Pask, Skew products over the irrational rotation, Israel J. Math., 69, (1990), 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  19. D.A. Pask, Ergodicity of certain cylinder flows, Israel J. Math., 76, (1991) 129–152.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Schmidt Cocycles of Ergodic Transformation Groups, Lect. Notes in Math. Vol. 1, Mac Millan Co of India (1977).

    Google Scholar 

  21. R. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J.Funct. Anal., 27, (1978), 350–372.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Aaronson, J., Lemańczyk, M., Mauduit, C., Nakada, H. (1995). Koksma’s Inequality and Group Extensions of Kronecker Transformations. In: Takahashi, Y. (eds) Algorithms, Fractals, and Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0321-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0321-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7996-6

  • Online ISBN: 978-1-4613-0321-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics