Advertisement

An Investigation of the Savinase Water Channel: Implications of Cavity Mutations

  • Ole H. Olsen
  • Jan T. Pedersenn
  • Christian Betzel
  • Susanne Eschenburg
  • Sven Branner
  • Sven Hastrup
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 379)

Abstract

The interior packing of proteins is believed to play a crucial role in stabilizing a protein’s conformation. Recently, the influence of changes in the interior packing on thermostability and function of proteins have been examined by means of protein engineering. Hydrophobic residues were substituted by more bulky residues in T4 lysozyme to fill a large cavity1,2 in order to improve the interior packing. Crystal structure analysis of the mutant proteins showed that the introduced aminoacids are accommodated with little perturbation of the three dimensional structures. The mutant proteins had normal activities and their thermal stabilities were marginally lower than those of the wildtype protein. Although the incorporation of more bulky hydrophobic sidechains in the core is expected to result in an increase in hydrophobic (entropic) stabilization a reduction in stability was observed. This result was ascribed to introduction of strain in the form of non-optimal dihedral angles, bond angle distortion and unfavorable van der Waals contacts (a positive free energy contribution).

Keywords

Internal Water Cavity Volume Crystal Structure Analysis Additional Water Molecule Trinitrobenzene Sulphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Karpusas, W.A. Baase, M. Matsumura, and B.W. Matthews, Proc. Natl. Ac. Sci. USA86: 8237 (1989).CrossRefGoogle Scholar
  2. 2.
    A.E. Eriksson, W.A. Baase, X.-J. Zhang, D.W. Heinz, M. Blaber, E. P. Baldwin, and B.W. Matthews, Science255: 178 (1992).PubMedCrossRefGoogle Scholar
  3. 3.
    W.A. Lim, D.C. Farruggio, and R.T. Sauer, Biochemistry31: 4324 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Grøn, M. Meldal, S. Branner, and K. Breddam, Eur. J. Biochem.194: 897 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    M.J. McGregor, A.I. Suhail, and M.J.E. Sternberg, J. Mol. Biol.198: 295 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    C.M.W. Ho and G.R. Marshall, J. Comput.-Aid. Mol. Design4: 337 (1991).CrossRefGoogle Scholar
  7. 7.
    S. Branner, S. Hastrup, O.H. Olsen, L. NØrskov-Lauritsen, M. Simonsen, D. Aaslung, E. Casteleijn, M. R. Egmond, and J. Haverkamp, Int. Patent Appl. WO 9100345, p. 99 (1991).Google Scholar
  8. 8.
    A.T. Brunger, “X-PLOR: A System for X-ray Crystallography”, edition 3. 1, Yale University Press, New Haven (1992).Google Scholar
  9. 9.
    A.V. Teplyakov, I.P. Kuronova, E.H. Harytyunyan, C. Frommel, and W.E. Hohne, FEBS Lett. 244: 208 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    T.E. Creighton, “Proteins: Structures and Molccular Principles”, W.H. Freeman, New York (1984).Google Scholar
  11. 11.
    M.L. Conolly and I.D. Kuntz, Am. Chem. Soc. Annu. Meeting180: 37 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Ole H. Olsen
    • 1
  • Jan T. Pedersenn
    • 2
  • Christian Betzel
    • 3
  • Susanne Eschenburg
    • 3
  • Sven Branner
    • 1
  • Sven Hastrup
    • 1
  1. 1.Novo NordiskBagsværdDenmark
  2. 2.Department of BiochemistryUniversity of Bath Claverton DownBathUK
  3. 3.EMBL c/o DESYHamburgGermany

Personalised recommendations