Advertisement

Propeptide-Mediated Folding in Subtilisin: The Intramolecular Chaperone Concept

  • Ujwal Shinde
  • Masayori Inouye
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 379)

Abstract

Subtilisin, an alkaline serine protease consisting of 275 amino acid residues is produced in various strains of Bacillus 1. As it was first identified in B. subtilis the enzyme was named ‘subtilisin’. Different variants of this enzyme have been identified and well studied. Among these include subtilisin BPN’, subtilisin E and subtilisin Carlsberg. Later this exoenzyme was found to belong to a very large family of proteins spanning both prokaryotes and eukaryotes called subtilases2.

Keywords

Mature Region Alkaline Serine Protease Robert Wood Johnson Medical School Subtilisin Family OmpA Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Inouye, Enzyme45: 314 (1991).PubMedGoogle Scholar
  2. 2.
    R.J. Siezen, W.M. de Vos, J. Leunissen, and B.W. Dijkstra, Protein Eng. 4: 719 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    H.W. Boyer and B.C. Carton, Arch. Biochem. Biophys.128: 442 (1986).CrossRefGoogle Scholar
  4. 4.
    H. Ikemura, H. Takagi, and M. Inouye, J. Biol. Chem.262: 7859 (1987).PubMedGoogle Scholar
  5. 5.
    H. Ikemura and M. Inouye, J. Biol. Chem.263: 12959 (1988).PubMedGoogle Scholar
  6. 6.
    X. Zhu, Y. Ohta, F. Jordan, and M. Inouye, Nature(London) 339: 483 (1987).Google Scholar
  7. 7.
    P.J. Barr, Cell66: 1 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Rijnboutt, W. Stoorvogel, H.J. Geu.e, and G.J. Sirous, J. Biol. Chem.267: 15665 (1992).PubMedGoogle Scholar
  9. 9.
    J.L. Silen and D.A. Agard, Nature(London) 341: 462 (1989).Google Scholar
  10. 10.
    J.R. Winther and P. Sorensen, Proc. Natl. Acad. Sci. USA88: 9330 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    G.E. Conner, J. Biol. Chem.267: 21738 (1993).Google Scholar
  12. 12.
    B.H. van den Hazel, M.C. Kielland-Brandt, and J.R. Winther, J. Biol. Chem.268: 18002 (1993).Google Scholar
  13. 13.
    Y.C. Lee, T. Ohta, and H. Matsuzawa, FEMS Microbiol. Lett.92: 73 (1992).CrossRefGoogle Scholar
  14. 14.
    C.B. Anfinsen, Science181: 223 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    S.D. Powers, R.M. Adams, and J.A. Wells, Proc. Natl. Acad. Sci. USA83: 3096 (1986).CrossRefGoogle Scholar
  16. 16.
    P.W. Cash, X. Zhu, Y. Ohta, J. Tsao, H. Lackland, M.D. Mateos-Nevado, M. Inouye, S. Stein, F. Jordon, and G.I. Tous, Peptide Res. 4: 292 (1989).Google Scholar
  17. 17.
    Y. Ohta, H. Hojo, S. Aimoto, T. Kobayashi, X. Zhu, F. Jordon, and M. Inouye, Mol. Microbiol5: 1507 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    C.G. Lerner, T. Kobayashi, and M. Inouye, J. Biol. Chem.265: 2085 (1990).Google Scholar
  19. 19.
    T. Kobayashi and M. Inouye, J. Mol. Biol.226: 931 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    C.S. Wright, R.A. Alden, and J. Kraut, Nature(London) 221: 235 (1969).Google Scholar
  21. 21.
    J. Drenth, W.G.J. Hoi, J.N. Jansonius, and R. Koekoek, Eur. J. Biochem.26: 177 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    C.A. McPhalen and M.N. James, Biochemistry27: 6582 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    D.J. Neidhart and G.A. Petsko, Protein Eng. 4: 271 (1988).CrossRefGoogle Scholar
  24. 24.
    U.P. Shinde and M. Inouye, Trends Biochetn. Sci.18: 442 (1993).CrossRefGoogle Scholar
  25. 25.
    U.P. Shinde and M. Inouye, J. Biochem. (Tokyo) 115: 629 (1994).Google Scholar
  26. 26.
    Y. Ohta and M. Inouye, Mol. Microbiol.4: 295 (1990).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Carter and J.A. Wells, Science237: 394 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    X. Zhu, Y. Ohta, P.W. Cash, G.I. Tous, S. Stein, M. Inouye, and F. Jordon, Life Sci. Adv. Biochem.11: 34 (1992).Google Scholar
  29. 29.
    U.P. Shinde, Y. Li, S. Chalterjec, and M. Inouye, Proc. Natl. Acad. Sci. USA90: 6924 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Baker, J.L. Sohl, and D.A. Agard, Nature(London) 356: 263 (1992).Google Scholar
  31. 31.
    P. Bryan, P. Alexander, S. Strausbcrg, F. Schwarz, W. Lan, G. Gilliland, and D.T. Gallagher, Biochemistry31: 4937 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Eder, M. Rheinnecker, and A. Fershi, Biochemistry32: 18 (1993).PubMedCrossRefGoogle Scholar
  33. 33.
    T.E. Creighton, Nature(London) 356: 194 (1992).CrossRefGoogle Scholar
  34. 34.
    S.E. Radford, C.M. Dobson, and P.A. Evans, Nature(London) 358: 302 (1992).Google Scholar
  35. 35.
    R.J. Ellis and S.M. van dcr Vies, Annu. Rev. Biochem.60: 321 (1991).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Ujwal Shinde
    • 1
  • Masayori Inouye
    • 1
  1. 1.Department of BiochemistryUniversity of Medicine and Dentistry of New Jersey Robert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations