Alloy Statistics and Phase Diagrams

  • An-Ban Chen
  • Arden Sher
Part of the Microdevices book series (MDPF)


This chapter is devoted to the study of phase diagrams of semiconductors and their alloys, and the underlying statistics and free energies. It starts by treating the relationship between phase diagrams and free energies. The concepts of common tangent line and its relationship to quality of chemical potentials and activity coefficients are deduced. Then several approximate but analytical free-energy models frequently encountered in alloy phase diagram studies are introduced. These results provide the necessary background for a comprehensive review of statistical models and thermal data that have worked for semiconductors. The phase diagrams studied here include the liquidus curves of binary melts (such as Ga1– x As x ) in equilibrium with the stoichiometric semiconductor compounds (such as GaAs), the miscibility gap of solid solutions, and the liquidus and solidus curves of ternary alloys. To study the detailed statistical properties of pseudobinary alloys, the quasi-chemical approximation (QCA) is generalized from pairs to clusters of arbitrary sizes. A transformation is devised that partitions the alloys’ excess energies naturally into two parts: a strain-dominated part that depends only on the concentration, and a smaller “chemical” energy that controls the temperature dependence of the cluster populations. Although this generalized QCA (GQCA) calculation produces free energies and phase diagrams that are similar to those from previous empirical models, the physics is quite different. In previous models, a tendency for phase separation in alloys always implies there is a repulsive energy between the different alloying species. The present theory shows that, while the larger long-range strain energy drives phase separation, in most zinc blende alloys the chemical energies are attractive, so they favor local correlations resembling ordered compounds.


Phase Diagram Phase Diagram Data Cluster Energy Coherent Potential Approximation Cluster Variation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antypas, G.A. (1970a), J. Electrochem. Soc. 117, 700.CrossRefGoogle Scholar
  2. Antypas, G.A. (1970b), J. Electrochem. Soc. 117, 1393.CrossRefGoogle Scholar
  3. Brebrick, R.F., C.-H. Su, and P.-K Liao (1983), in Semiconductors and Semimetals (Academic Press), p. 171.Google Scholar
  4. Casey, Jr., H.C. and M.B Panish (1978), Heterostructure Lasers, Part B, “Materials and Operation Characteristics” ( Academic Press, New York).Google Scholar
  5. Chen, A.-B., and A. Sher (1985), Phys. Rev. B 32, 3695.ADSCrossRefGoogle Scholar
  6. Chen, A.-B., A. Sher, and M.A. Berding (1988), Phys. Rev. B 37, 6285.ADSCrossRefGoogle Scholar
  7. Connolly, W.D., and A.R. Williams (1983), Phys. Rev. B 27, 5169.ADSCrossRefGoogle Scholar
  8. de Fontaine, D. (1979), Solid State Phys. 34, 73.CrossRefGoogle Scholar
  9. Fedders, P.A., and M.W. Muller, (1984), J. Phys. Chem. Solids 45, 685.ADSCrossRefGoogle Scholar
  10. Ferreira, L.G., S.-H. Wei, and A. Zunger, (1989), Phys. Rev. B 40, 3197.ADSCrossRefGoogle Scholar
  11. Foster, L.M. (1972), Electrochem. Soc. Extended Abs. Housing Meeting, P147.Google Scholar
  12. Foster, L.M., and J.F. Woods (1971), J. Electrochem. Soc. 118, 1175.CrossRefGoogle Scholar
  13. Guggenheim, A. (1952), Mixtures( Clarendon, Oxford).Google Scholar
  14. Gyorffy, B.L., and G.M. Stocks (1979), in Electrons in Disordered Metals and Metallic Surfaces, NATO Advanced Study Institute, Vol. 42, eds. P. Phariseau, B.L. Gyorffy, and L. Schine ( Plenum, New York).Google Scholar
  15. Kikuchi, R. (1951), Phys. Rev. 81, 988.MathSciNetADSMATHCrossRefGoogle Scholar
  16. Kikuchi, R. (1974), J. Chem. Phys. 60, 1071.ADSCrossRefGoogle Scholar
  17. Kikuchi, R. (1981), Physica 103B, 41.Google Scholar
  18. Kikuchi, R. (1982a), Calphad 6, 1.CrossRefGoogle Scholar
  19. Kikuchi, R. (1982b), J. Vac. Sci. Technol. 21(1), 129.MathSciNetADSCrossRefGoogle Scholar
  20. Landau, L.D., and E.M. Lifshitz (1986), Statistical Physics, 3rd ed. Part 1, trans. J.B. Skes and M.J. Kearsley (Pergamon Press).Google Scholar
  21. Laugies, A. (1973), Rev. Phys. Appl. 8, 259.Google Scholar
  22. Martins, J.L., and A. Zunger (1984), Phys. Rev. B 30, 6217.ADSCrossRefGoogle Scholar
  23. Onsager, L. (1944), Phys. Rev. 65, 117.MathSciNetADSMATHCrossRefGoogle Scholar
  24. Panish, M.B., and Ilgemes (1972), Prog. Solid State Chem. 7, 39.CrossRefGoogle Scholar
  25. Patrick, R., A.-B. Chen, and A. Sher (1987), Phys. Rev. B 36, 6385.ADSCrossRefGoogle Scholar
  26. Patrick, R.A., A.-B. Chen, A. Sher, and M.A. Berding (1988), J. Vac. Sci. Technol. A6(4), 2643.ADSGoogle Scholar
  27. Phillips, J.C., and J.A. Van Vechten (1970), Phys. Rev. B 2, 2147.ADSCrossRefGoogle Scholar
  28. Sher, A., M. van Schilfgaarde, A.-B. Chen, and W. Chen (1987), Phys. Rev. B 36, 4279.ADSCrossRefGoogle Scholar
  29. Spicer, W.E., J.A. Silberman, J. Morgan, I. Lindau, J.A. Wilson, A.-B. Chen, and A. Sher (1982), Phys. Rev. Lett. 49, 948.ADSCrossRefGoogle Scholar
  30. Stringfellow, G.B. (1974), J. Ciyst. Growth 27, 21.ADSGoogle Scholar
  31. Stringfellow, G.B., and P.E. Green (1969), J.Phys. Chem. Solids. 30, 1779.ADSCrossRefGoogle Scholar
  32. Stringfellow, G.B. (1973), J. Phys. Chem. Solids 34, 1748.ADSCrossRefGoogle Scholar
  33. Su, CM., P.K. Liao, and R.F. Brebrick (1985), J. Electrochem. Soc. 132, 942.CrossRefGoogle Scholar
  34. Vieland, L.J. (1963), Acta. Mat. 11, 137.CrossRefGoogle Scholar
  35. Wei, S.-H., L.G. Ferreira, and A. Zunger, (1990), Phys. Rev. B 41, 8240.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • An-Ban Chen
    • 1
  • Arden Sher
    • 2
  1. 1.Auburn UniversityAuburnUSA
  2. 2.SRI InternationalMenlo ParkUSA

Personalised recommendations