Theory Of Photoionization

VUV and Soft X-Ray Frequency Region
  • M. Ya. Amusia
Part of the Physics of Atoms and Molecules book series (PAMO)


In this book photoionization is considered as a process of interaction between a low-intensity electromagnetic field and atomic or multiatomic targets, which results in removing or exciting their electrons. Although studied for about a century, this process still remains a subject of intense experimental and theoretical investigation and will definitely keep its importance at least in the foreseeable future.


Excited Electron Photoionization Cross Section Giant Resonance Photo Ionization Auger Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Hartree, The Calculation of Atomic Structures (Wiley, New York, 1957).MATHGoogle Scholar
  2. 2.
    D. Pines and P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, 1966).Google Scholar
  3. 3.
    M. Ya, Amusia, Atomic Photoeffect (Plenum Press, New York, 1990).Google Scholar
  4. 4.
    H. P. Kelly, in Atomic Physics 8, edited by I. Lindgren, et al, (Plenum Press, New York, 1983), p. 305.Google Scholar
  5. 5.
    A. R. Williams and U. Barth, in Theory of Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum Press, New York, 1983).Google Scholar
  6. 6.
    A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    D. J. Thouless, The Quantum Mechanics of Many-body Systems (Academic Press, New York, 1961).MATHGoogle Scholar
  8. 8.
    P. G. Burke, in Electronic and Atomic Collisions, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 201.Google Scholar
  9. 9.
    N. A. Cherepkov, Adv. At. Mol Phys, 19, 395 (1983).CrossRefGoogle Scholar
  10. 10.
    G. F. Bertsch, A. Bulgac, D. Tománek, and Yang Wang, Phys. Rev. Lett 67, 2690 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Hertel, H. Steger, J. de Vries, B. Weisser, C. Menzel, B. Kamke, and W. Kamke, Phys. Rev. Lett. 68, 784(1992).ADSCrossRefGoogle Scholar
  12. 12.
    C. Bréchignac, P. Cahuzac, F. Carlier, and J Leygnier, Phys. Rev. Lett. 63, 1368 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    M. Ya, Amusia, L. V. Chernysheva, V. K. Ivanov, and V. A. Kupchenko, Z Phys. D 14, 215 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    S. V. Lavrentjev, M. E. Vasiljeva, I. D. Petrov, and V. L. Sukhorukov, Opt. Spectrosc. (USSR) 69(2), 186 (1990).ADSGoogle Scholar
  15. 15.
    M. Ya, Amusia, V. K. Ivanov, and V. A. Kupchenko, Z. Phys. D 14, 219 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    B. Peart and I. C. Lyon, J. Phys. B 20, L673 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    J. Tulkki, Phys. Rev. A 48, 2048 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    M. Y.A. Amusia, G. F. Gribakin, V. K. Ivanov, and L. V. Chernysheva, J. Phys. B 23, 385 (1990).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Ya, Amusia, V. K. Dolmatov, and M. M. Mansurov, J. Phys. B 23, L491 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    G. F. Gribakin, A. A. Gribakina, B. V. Gul’tsev, and V. K. Ivanov, J. Phys. B 25, 1767 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    V. K. Ivanov and J B. West, J. Phys. B 26, 2099 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    M. Ya, Amusia and N. B. Avdonina, Z Phys. D 14, 191 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    M. Ya, Amusia, V. K. Ivanov, and V. A. Kupchenko, J. Phys. B 14, L667 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    S. J. Schaphorst, A. F. Kodre, J. Ruscheinski, B. Crasemank, T. Åberg, I. Tulkki, M. H. Chen, Y. Azuma, and G. S. Brown, Phys. Rev. A 47, 1953 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    G. F. Gribakin, B. V. Gul’tsev, V. K. Ivanov, and M. Yu, Kushiev, J. Phys. B 23, 4505 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    C. Froese-fischer and J. E. Hansen, Phys. Rev. A 44, 1559 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    C. W. Walter and J. R. Peterson, Phys. Rev. Lett. 68, 2281 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    B. Kämmerling, H. Kossmann, and V. Schmidt, J. Phys. B 22, 841 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    U. Becker, D. Szostak, H. G. Kerkhoff, M. Kupsch, B. Langer, R. Wehlitz, A. Yagishita, and X Hayishi, Phys. Rev. A 39, 3902 (1989).ADSCrossRefGoogle Scholar
  30. 30.
    M. Ya, Amusia, L. V. Chernysheva, and K. L. Tsemekhman, J. Phys. B 23, 393 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    V. Radojevic, M. Kutzner, and H. P. Kelly, Phys. Rev. A 40, 727 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    J. M. Bizau, D. Cubaynes, P. Gérard, and F. J. Wuilleumier, Phys. Rev. A 40, 3002 (1989).ADSCrossRefGoogle Scholar
  33. 33.
    W. Wijesundera and H. P. Kelly, Phys. Rev. A 39, 634 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    V. L. Sukhorukov, B. M. Lagutin, H. Schmoranzer, I. D. Petrov, and K.-H. Schartner, Phys. Lett. A 169, 445(1992).ADSCrossRefGoogle Scholar
  35. 35.
    U. Becker and D. Shirley, Phys. Scr. T31, 56 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    T. Nagata, M. Yoshino, T. Hayaishi, Y. Itikavva, Y. Itoh, T. Koizumi, T. Matsuo, Y. Sato, E. Shigemasa, Y. Takizawa, and A. Yagishita, Phys. Scr. 41, 47 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    J. Doppelfeld, N. Aners, B. Esser, F. von Busch, H. Scherer, and S. Zinz, J. Phys. B 26, 445 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    P. Zimmermann, Comment At. Mol. Phys. 23, 45 (1989).Google Scholar
  39. 39.
    M. Ya, Amusia, J. Phys. IV 3, Colloq. 6, Suppl. JP II, N11, 91–106 (1993).Google Scholar
  40. 40.
    U. Becker and R. Wehlitz, Phys. Scr. T41, 127 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    M. Ya, Amusia, Phys. Lett. A 183, 201 (1993).ADSCrossRefGoogle Scholar
  42. 42.
    R. D. Deslattes, R. E. La Villa, P. L. Cowan, and A. Henins, Phys. Rev. A 27, 923 (1983).ADSCrossRefGoogle Scholar
  43. 43.
    G. H. Wannier, Phys. Rev. 90, 817 (1953).ADSMATHCrossRefGoogle Scholar
  44. 44.
    A. K. Kazansky and V. N. Ostrovsky, J. Phys. B 25, 2121 (1992).ADSCrossRefGoogle Scholar
  45. 45.
    M. Ya, Amusia, M. Yu, Kuchiev, and S. A. Sheinerman, in Coherence and Correlations in Atomic Collisions, edited by H. Kleinpoppen and J. F. Williams (Plenum Press, New York, 1980), p. 297.Google Scholar
  46. 46.
    M. Yu. Kuchiev and S. A. Sheinerman, Sov. Phys. Usp. 32, 569 (1989).ADSCrossRefGoogle Scholar
  47. 47.
    M. Meyer, E. von Raven, B. Sonntag, and J. E. Hansen, Phys. Rev. A 43, 177 (1991).ADSCrossRefGoogle Scholar
  48. 48.
    A. Ehresmann, V. A. Kilini, L. V. Chernysheva, H. Schmoranzer, M. Ya, Amusia, and K.-H. Schartner, J. Phys. B 26, L97 (1993).ADSCrossRefGoogle Scholar
  49. 49.
    M. Kutzner, this volume.Google Scholar
  50. 50.
    C. Guet and W. R. Johnson, Phys. Rev. B 45, 11283 (1992).ADSCrossRefGoogle Scholar
  51. 51.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956); 32, 59 (1957) (in Russian).Google Scholar
  52. 52.
    S. A. Blundell, J. Saperstein, and W. Johnson, Phys. Rev. D 45, 1602 (1992).ADSCrossRefGoogle Scholar
  53. 53.
    V. R. Shaginyan, Solid State Commun. 55, 9 (1985).ADSCrossRefGoogle Scholar
  54. 54.
    R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).MATHGoogle Scholar
  55. 55.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience Publishers, New York, 1967).Google Scholar
  56. 56.
    M. Ya, Amusia and V. R. Shaginyan, J. Phys. II 3, 449 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. Ya. Amusia
    • 1
  1. 1.A. F. Ioffe Physical-Technical InstituteSt. PetersburgRussia

Personalised recommendations