Avian Navigation, Geomagnetic Field Sensitivity, and Biogenic Magnetite

  • David E. Presti
Part of the Topics in Geobiology book series (TGBI, volume 5)

Abstract

How birds manage to find their way around in the world has long been a source of fascination. These animals range widely when foraging for food, sometimes traveling 100 km or more from their nest or roost. Moreover, many species of birds fly long distances between breeding grounds and wintering areas, returning with extraordinary precision to specific locales year after year. Distances traveled during such migrations typically average between 1000 and 6000 km each way between breeding and wintering grounds. Several species of birds travel close to 30,000 km annually between arctic breeding grounds and wintering areas in or near the antarctic. It would seem that birds, as well as other animals which forage and migrate over large distances, must possess navigational abilities of a fair degree of sophistication. Indeed, given the essential importance to such animals of an accurate and fail-safe navigational system, one might not be surprised to find that evolution has been opportunistic in exploiting available environmental sources of navigationally useful information.

Keywords

Nickel Migration Europe Cage Cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Able, K. P., 1980, Mechanisms of orientation, navigation, and homing, in: Animal Migration, Orientation, and Navigation (S. A. Gauthreaux, Jr., ed.), Academic Press, New York, pp. 283–373.Google Scholar
  2. Alerstam, T., and Högstedt, G., 1983, The role of the geomagnetic field in the development of birds’ compass sense, Nature 306:463–465.CrossRefGoogle Scholar
  3. Beaugrand, J. P., 1976, An attempt to confirm magnetic sensitivity in the pigeon, Columba livia, J. Comp. Physiol. 110:343–355.CrossRefGoogle Scholar
  4. Beck, W., and Wiltschko, W., 1982, The magnetic field as a reference system for genetically encoded migratory direction in pied flycatchers (Ficedula hypoleuca Pallas), Z. Tierpsychol. 60: 41–46.CrossRefGoogle Scholar
  5. Beck, W., and Wiltschko, W., 1983, Orientation behaviour recorded in registration cages: A comparison of funnel cages and radial perch cages, Behaviour 87: 145–156.CrossRefGoogle Scholar
  6. Benvenuti, S., Baldaccini, N. E., and Ioalé, P., 1982, Pigeon homing: Effect of altered magnetic field during displacement on initial orientation, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 140–148.Google Scholar
  7. Bernstein, M. H., 1982, Temperature regulation in exercising birds, in: A Companion to Animal Physiology, (C. R. Taylor, K. Johansen, and L. Bolis, eds.), Cambridge University Press, London, pp. 189–197.Google Scholar
  8. Bingman, V. P., 1981, Savannah sparrows have a magnetic compass, Anim. Behav. 29: 962–963.CrossRefGoogle Scholar
  9. Bingman, V. P., 1983, Magnetic field orientation of migratory savannah sparrows with different first summer experience, Behaviour 87: 43–53.CrossRefGoogle Scholar
  10. Blakemore, R. P., 1975, Magnetotactic bacteria, Science 190: 377–379.PubMedCrossRefGoogle Scholar
  11. Bookman, M. A., 1977, Sensitivity of the homing pigeon to an earth-strength magnetic field, Nature 267: 340–342.PubMedCrossRefGoogle Scholar
  12. Bookman, M. A., 1978, Sensitivity of the homing pigeon to an earth-strength magnetic field, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 127–134.Google Scholar
  13. Carr, P. H., Switzer, W. P., and Hollander, W. F., 1982, Evidence for interference with navigation of homing pigeons by a magnetic storm, Iowa State J. Res. 56: 327–340.Google Scholar
  14. Delius, J. D., Perchard, R. J., and Emmerton, J., 1976, Polarized light discrimination by pigeons and an electroretinographic correlate, J. Comp. Physiol. Psychol. 90:560–571.PubMedCrossRefGoogle Scholar
  15. Dirac, P. A. M., 1931, Quantised singularities in the electromagnetic field, Proc. R. Soc. London Ser. A 133:60–72.CrossRefGoogle Scholar
  16. Emlen, S. T., 1975a, Migration: Orientation and navigation, in: Avian Biology, Volume 5 (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 129–219.Google Scholar
  17. Emlen, S. T., 1975b, The stellar-orientation system of a migratory bird, Sci. Am. 233(2): 102–111.PubMedCrossRefGoogle Scholar
  18. Emlen, S. T., Wiltschko, W., Demong, N. J., Wiltschko, R., and Bergman, S., 1976, Magnetic direction finding: Evidence for its use in migratory indigo buntings, Science 193:505–508.PubMedCrossRefGoogle Scholar
  19. Frei, U., 1982, Homing pigeons’ behaviour in the irregular magnetic field of western Switzerland, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 129–139.Google Scholar
  20. Frei, U., and Wagner, G., 1976, Die Anfangsorientierung von Brieftauben im erdmagnetisch gestörten Gebiet des Mont Jorat, Rev. Suisse Zool. 83:891–897.Google Scholar
  21. Goldsmith, T. H., 1980, Hummingbirds see near ultraviolet light, Science 207: 786–788.PubMedCrossRefGoogle Scholar
  22. Gordon, D. A., 1948, Sensitivity of the homing pigeon to the magnetic field of the earth, Science 108: 710–711.PubMedCrossRefGoogle Scholar
  23. Gould, J. L., 1980, The case for magnetic sensitivity in birds and bees (such as it is), Am. Sci. 68: 256–267.Google Scholar
  24. Gould, J. L., 1982, The map sense of pigeons, Nature 296: 205–211.CrossRefGoogle Scholar
  25. Gould, J. L., Kirschvink, J. L., and Deffeyes, K. S., 1978, Bees have magnetic remanence, Science 201: 1026–1028.PubMedCrossRefGoogle Scholar
  26. Griffin, D. R., 1944, The sensory basis of bird navigation, Q. Rev. Biol. 19: 15–31.CrossRefGoogle Scholar
  27. Griffin, D. R., 1952, Bird navigation, Biol. Rev. Cambridge Philos. Soc. 27: 359–393.CrossRefGoogle Scholar
  28. Griffin, D. R., 1972, Nocturnal bird migration in opaque clouds, in: Animal Orientation and Navigation (S. R. Galler, K. Schmidt-Koenig, G. J. Jacobs, and R. E. Belleville, eds.), NASA SP-262, U.S. Government Printing Office, Washington, D.C., pp. 169–188.Google Scholar
  29. Griffin, D. R., 1973, Oriented bird migration in or between opaque cloud layers, Proc. Am. Philos. Soc. 117:117–141.Google Scholar
  30. Griffin, D. R., 1982, Ecology of migration: Is magnetic orientation a reality?, Q. Rev. Biol. 57: 293–295.CrossRefGoogle Scholar
  31. Gwinner, E., and Wiltschko, W., 1978, Endogeneously controlled changes in migratory direction of the garden warbler, Sylvia borin, J. Comp. Physiol. 125: 267–273.CrossRefGoogle Scholar
  32. Gwinner, E., and Wiltschko, W., 1980, Circannual changes in migratory orientation of the garden warbler, Sylvia borin, Behav. Ecol. Sociobiol. 7 :73–78.CrossRefGoogle Scholar
  33. Hoffmann, K., 1954, Versuche zu der im Richtungsfinden der Vögel enthaltenen Zeitschätzung, Z. Tierpsychol. 11: 453–475.CrossRefGoogle Scholar
  34. Hoffmann, K., 1960, Experimental manipulation of the orientational clock in birds, Cold Spring Harbor Symp. Quant. Biol. 25: 379–387.PubMedGoogle Scholar
  35. Ising, G., 1945, Die physikalische Moglichkeit eines Tierischen Orientierungsinnes auf Basis der Erdrotation, Ark. Mat. Astron. Fys. 32A: 1–23.Google Scholar
  36. Jungerman, R. L., and Rosenblum, B., 1980, Magnetic induction for the sensing of magnetic fields by animals-An analysis, J. Theor. Biol. 87: 25–32.PubMedCrossRefGoogle Scholar
  37. Kalmijn, A. J., 1978, Experimental evidence of geomagnetic field orientation in elasmobranch fishes, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 347–353.Google Scholar
  38. Kalmijn, A. J., 1981, Biophysics of geomagnetic field detection, IEEE Trans. Magn. Mag-17: 1113–1124.CrossRefGoogle Scholar
  39. Keeton, W. T., 1969, Orientation by pigeons: Is the sun necessary?, Science 165: 922–928.PubMedCrossRefGoogle Scholar
  40. Keeton, W. T., 1971, Magnets interfere with pigeon homing, Proc. Natl. Acad. Sci. USA 68:102–106.PubMedCrossRefGoogle Scholar
  41. Keeton, W. T., 1973, Release-site bias as a possible guide to the “map” component in pigeon homing, J. Comp. Physiol. 86:1–16.CrossRefGoogle Scholar
  42. Keeton, W. T., 1974a, The orientational and navigational basis of homing in birds, Adv. Stud. Behav. 5: 47–132.CrossRefGoogle Scholar
  43. Keeton, W. T., 1974b, The mystery of pigeon homing, Sci. Am. 231(6):96–107.PubMedGoogle Scholar
  44. Keeton, W. T., Larkin, T. S., and Windsor, D. M., 1974, Normal fluctuations in the earth’s magnetic field influence pigeon orientation, Comp. Physiol. 95: 95–103.CrossRefGoogle Scholar
  45. Kiepenheuer, J., 1978a, Pigeon navigation and magnetic field: Information collected during the outward journey is used during the homing process, Naturwissenschaften 65:113–114.CrossRefGoogle Scholar
  46. Kiepenheuer, J., 1978b, Iversion of the magnetic field during transport: Its influence on the homing behavior of pigeons, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 135–142.Google Scholar
  47. Kiepenheuer, J., 1982, The effect of magnetic anomalies on the homing behaviour of pigeons: An attempt to analyse the possible factors involved, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 120–128.Google Scholar
  48. Kirschvink, J. L., 1982, Birds, bees and biomagnetism: A new look at the old problem of magnetoreception, Trends Neurosci. 5: 160–167.Google Scholar
  49. Kirschvink, J. L., and Gould, J. L., 1981, Biogenic magnetite as a basis for magnetic field detection in animals, BioSystems 13: 181–201.PubMedCrossRefGoogle Scholar
  50. Kramer, G., 1952, Experiments on bird orientation, Ibis 94: 265–285.CrossRefGoogle Scholar
  51. Kramer, G., 1959, Recent experiments on bird orientation, Ibis 101: 399–416.CrossRefGoogle Scholar
  52. Kreithen, M. L. and Eisner, T., 1978, Ultraviolet light detection by the homing pigeon, Nature 272: 347–348.PubMedCrossRefGoogle Scholar
  53. Kreithen, M. L., and Keeton, W. T., 1974a, Detection of changes in atmospheric pressure by the homing pigeon, J. Comp. Physiol. 89: 73–82.CrossRefGoogle Scholar
  54. Kreithen, M. L., and Keeton, W. T., 1974b, Detection of polarized light by the homing pigeon, Columba livia, J. Comp. Physiol. 89: 83–92.CrossRefGoogle Scholar
  55. Kreithen, M. L., and Keeton, W. T., 1974c, Attempts to condition homing pigeons to magnetic stimuli, J. Comp. Physiol. 91: 355–362.CrossRefGoogle Scholar
  56. Kreithen, M. L., and Quine, D. B., 1979, Infrasound detection by the homing pigeon: A behavioral audiogram, J. Comp. Physiol. 129: 1–4.CrossRefGoogle Scholar
  57. Langevin, P., 1905a, Magnétisme et théorie des électrons, Ann. Chim. Phys. 8(5): 70–127.Google Scholar
  58. Langevin, P., 1905b, Sur la théorie du magnétisme, J. Phys. (Paris) 4(4): 678–693.Google Scholar
  59. Larkin, T. S., and Keeton, W. T., 1976, Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation, J. Comp. Physiol. 110: 227–231.CrossRefGoogle Scholar
  60. Leask, M. J. M., 1977, A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons, Nature 267: 144–145.PubMedCrossRefGoogle Scholar
  61. Lednor, A. J., 1982, Magnetic navigation in pigeons: Possibilities and problems, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 109–119.Google Scholar
  62. Lowenstam, H. A., 1962, Magnetite in denticle capping in recent chitons (Polyplacophora), Geol. Soc. Am. Bull 73: 435–438.CrossRefGoogle Scholar
  63. Matthews, G. V. T., 1951, The experimental investigation of navigation in homing pigeons, J. Exp. Biol. 28: 508–536.Google Scholar
  64. Matthews, G. V. T., 1953a, Sun navigation in homing pigeons, J. Exp. Biol. 30: 243–267.Google Scholar
  65. Matthews, G. V. T., 1953b, Navigation in the manx shearwater, J. Exp. Biol. 30: 370–396.Google Scholar
  66. Merkel, F. W., and Wiltschko, W., 1965, Magnetismus and Richtungsfinden zugunruhiger Rotkehlchen, Erithacus rubecula, Vogelwarte 23: 71–77.Google Scholar
  67. Mewaldt, L. R., 1964, California sparrows returns from displacement to Maryland, Science 146: 941–942.PubMedCrossRefGoogle Scholar
  68. Michener, M. C., and Walcott, C., 1967, Homing of single pigeons-Analysis of tracks, J. Exp. Biol. 47: 99–131.PubMedGoogle Scholar
  69. Moore, F. R., 1977, Geomagnetic disturbance and the orientation of nocturnally migrating birds, Science 196: 682–684.PubMedCrossRefGoogle Scholar
  70. Moore, F. R., 1978, Sunset and the orientation of a nocturnal migrant bird, Nature 274: 154–156.CrossRefGoogle Scholar
  71. Moore, F. R., 1980, Solar cues in the migratory orientation of the savannah sparrow, Passerculus sandwichensis, Anim. Behav. 28: 684–704.CrossRefGoogle Scholar
  72. Papi, F., 1976, The olfactory navigation system of the homing pigeon, Verh. Dtsch. Zool. Ges. 69: 184–205.Google Scholar
  73. Papi, F., 1982, Olfaction and homing in pigeons: Ten years of experiments, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 149–159.Google Scholar
  74. Papi, F., Ioalé, P., Fiaschi, V., Benvenuti, S. and Baldaccini, N. E., 1978, Pigeon homing: Cues detected during the outward journey influence initial orientation, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 65–77.Google Scholar
  75. Parrish, J., Benjamin, R., and Smith, R., 1981, Near-ultraviolet reception in the mallard, Auk 98: 627–628.Google Scholar
  76. Presti, D., and Pettigrew, J. D., 1980, Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals, Nature 285: 99–101.PubMedCrossRefGoogle Scholar
  77. Quine, D. B., and Kreithen, M. L., 1981, Frequency shift discrimination: Can homing pigeons locate infrasounds by Doppler shifts?, I. J. Comp. Physiol. 141: 153–155.CrossRefGoogle Scholar
  78. Reille, A., 1968, Essai de mise en évidence d’une sensibilité du pigeon au champ magnétique á l’aide d’un conditionnement nociceptif, J. Physiol. (Paris) 60: 85–92.Google Scholar
  79. Sauer, E. F. G., 1957, Die Sternenorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin und curruca), Z. Tierpsychol. 14: 29–70.Google Scholar
  80. Schmidt-Koenig, K., 1960, Internal clocks and homing, Cold Spring Harbor Symp. Quant. Biol. 25: 389–393.PubMedGoogle Scholar
  81. Schmidt-Koenig, K., and Schlichte, H. J., 1972, Homing in pigeons with impaired vision, Proc. Natl. Acad. Sci. USA 69: 2246–2247.CrossRefGoogle Scholar
  82. Schmidt-Koenig, K., and Walcott, C., 1978, Tracks of pigeons homing with frosted lenses, Anim. Behav. 26: 480–486.CrossRefGoogle Scholar
  83. Schreiber, B., and Rossi, O., 1976, Correlation between race arrivals of homing pigeons and solar activity, Boll. Zool. 43: 317–320.Google Scholar
  84. Southern, W. E., 1971, Gull orientation by magnetic cues: A hypothesis revisited, Ann N.Y. Acad. Sci. 188: 295–311.PubMedCrossRefGoogle Scholar
  85. Southern, W. E., 1972a, Influence of disturbances in the earth’s magnetic field on ring-billed gull orientation, Condor 74: 102–105.CrossRefGoogle Scholar
  86. Southern, W. E., 1972b, Magnets disrupt the orientation of juvenile ring-billed gulls, Bioscience 22: 476–479.CrossRefGoogle Scholar
  87. Southern, W. E., 1978, Orientational responses of ring-billed gull chicks: A re-evaluation, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 311–317.Google Scholar
  88. Torre-Bueno, J. R., 1976, Temperature regulation and heat dissipation during flight in birds, J. Exp. Biol. 65: 471–482.PubMedGoogle Scholar
  89. van Riper, W., and Kalmbach, E. R., 1952, Homing not hindered by wing magnets, Science 115: 577–578.PubMedCrossRefGoogle Scholar
  90. Viehmann, W., 1979, The magnetic compass of blackcaps (Sylvia atricapilla), Behaviour 68: 24–30.CrossRefGoogle Scholar
  91. Viguier, C., 1882, Le sens de l’orientation et ses organes chez les animaux et chez l’homme, Rev. Phil. 14: 1–36.Google Scholar
  92. Visalberghi, E., and Alleva, E., 1979, Magnetic influences on pigeon homing, Biol. Bull. 156: 246–256.CrossRefGoogle Scholar
  93. von Frisch, K., 1967, The Dance Language and Orientation of Bees, Harvard University Press, Cambridge, Mass.Google Scholar
  94. Wagner, G., 1976, Das Orientierungsverhalten von Brieftauben im erdmagnetisch gestörten Gebiete des Chasseral, Rev. Suisse Zool. 83: 883–890.Google Scholar
  95. Walcott, B., and Walcott, C., 1982, A search for magnetic field receptors in animals, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 338–343.Google Scholar
  96. Walcott, C., 1974, The homing of pigeons, Am. Sci. 62: 542–552.PubMedGoogle Scholar
  97. Walcott, C., 1977, Magnetic fields and the orientation of homing pigeons under the sun, J. Exp. Biol. 70: 105–123.Google Scholar
  98. Walcott, C., 1978, Anomolies in the earth’s magnetic field increase the scatter of pigeon’s vanishing bearings, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 143–151.Google Scholar
  99. Walcott, C., 1980, Homing-pigeon vanishing bearings at magnetic anomalies are not altered by bar magnets, J. Exp. Biol. 86: 349–352.Google Scholar
  100. Walcott, C., 1982, Is there evidence for a magnetic map in homing pigeons?, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 99–108.Google Scholar
  101. Walcott, C., and Green, R. P., 1974, Orientation of homing pigeons altered by a change in the direction of an applied magnetic field, Science 184: 180–182.PubMedCrossRefGoogle Scholar
  102. Walcott, C., Gould, J. L., and Kirschvink, J. L., 1979, Pigeons have magnets, Science 205: 1027–1029.PubMedCrossRefGoogle Scholar
  103. Wallraff, H. G., 1970, Über die Flugrichtungen verfrachteter Brieftauben in Abhängigkeit vom Hei- matort und vom Ort der Freilassung, Z. Tierpsychol. 27: 303–351.Google Scholar
  104. Wallraff, H. G., 1978, Preferred compass directions in initial orientation of homing pigeons, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 171–183.Google Scholar
  105. Wallraff, H. G., 1979, Goal-oriented and compass-oriented movements of displaced homing pigeons after confinement in differentially shielded aviaries, Behav. Ecol. Sociobiol. 5: 201–225.CrossRefGoogle Scholar
  106. Wallraff, H. G., 1980a, Does pigeon homing depend on stimuli perceived during displacement? I. Experiments in Germany, J. Comp. Physiol. 139: 193–201.CrossRefGoogle Scholar
  107. Wallraff, H. G., 1980b, Olfaction and homing in pigeons: Nerve-section experiments, critique, hypotheses, J. Comp. Physiol. 139: 209–224.CrossRefGoogle Scholar
  108. Wallraff, H. D., Foá, A., and Ioalé, P., 1980, Does pigeon homing depend on stimuli perceived during displacement? II. Experiments in Italy, J. Comp. Physiol. 139: 203–208.CrossRefGoogle Scholar
  109. Wallraff, H. G., Benvenuti, S., Papi, F., and Gould, J. L., 1982, The homing mechanism of pigeons, Nature 300: 293–294.CrossRefGoogle Scholar
  110. Waterman, T. H., 1981, Polarization sensitivity (H. Autrum, ed.), in: Handbook of Sensory Physiology, Springer-Verlag, Berlin pp. 281–469. Volume VII/6B.Google Scholar
  111. Wiltschko, R., and Wiltschko, W., 1978, Evidence for the use of magnetic outward-journey information in homing pigeons, Naturwissenschaften 65: 112–113.CrossRefGoogle Scholar
  112. Wiltschko, R., and Wiltschko, W., 1981, The development of sun compass orientation in young homing pigeons, Behav. Ecol. Sociobiol. 9: 135–141.CrossRefGoogle Scholar
  113. Wiltschko, R., Wiltschko, W., and Keeton, W. T., 1978, Effect of outward journey in an altered magnetic field on the orientation of young homing piegons, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 152–161.Google Scholar
  114. Wiltschko, R., Nohr, D., and Wiltschko, W., 1981, Pigeons with a deficient sun compass use the magnetic compass, Science 214: 343–345.PubMedCrossRefGoogle Scholar
  115. Wiltschko, W., 1968, Über den Einfluss statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula), Z. Tierpsychol. 25: 537–558.PubMedCrossRefGoogle Scholar
  116. Wiltschko, W., 1972, The influence of magnetic total intensity and inclination on directions preferred by migrating European robins (Erithacus rubecula), in Animal Orientation and Navigation (S. R. Galler, K. Schmidt-Koenig, G. J. Jacobs, and R. E. Belleville, eds.), NASA SP-262, U.S. Government Printing Office, Washington, D.C., pp. 569–578.Google Scholar
  117. Wiltschko, W., 1978, Further analysis of the magnetic compass of migratory birds, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 302–310.Google Scholar
  118. Wiltschko, W., and Gwinner, E., 1974, Evidence for an innate magnetic compass in garden warblers, Naturwissenschaften 61: 406.PubMedCrossRefGoogle Scholar
  119. Wiltschko, W., and Wiltschko, R., 1972, Magnetic compass of European robins, Science 176: 62–64.PubMedCrossRefGoogle Scholar
  120. Wiltschko, W., and Wiltschko, R., 1975a, The interaction of stars and magnetic field in the orientation system of night migrating birds. I. Autumn experiments with European warblers (genus Sylvia), Z. Tierpsychol. 37: 337–355.PubMedCrossRefGoogle Scholar
  121. Wiltschko, W., and Wiltschko, R., 1975b, The interaction of stars and magnetic field in the orientation system of night migrating birds. II. Spring experiments with European robins (Erithacus rubecula), Z. Tierpsychol. 39: 265–282.PubMedGoogle Scholar
  122. Wiltschko, W., and Wiltschko, R., 1976, Interrelation of magnetic compass and star orientation in night-migrating birds, J. Comp. Physiol. 109: 91–99.CrossRefGoogle Scholar
  123. Wiltschko, W., and Wiltschko, R., 1981, Disorientation of inexperienced young pigeons after transportation in total darkness, Nature 291: 433–434.CrossRefGoogle Scholar
  124. Wiltschko, W., and Wiltschko, R., 1982, The role of outward journey information in the orientation of homing pigeons, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, Berlin, pp. 239–252.Google Scholar
  125. Wiltschko, W., Wiltschko, R., and Keeton, W. T., 1976, Effects of a “permanent” clock-shift on the orientation of young homing pigeons, Behav. Ecol. Sociobiol. 1: 229–243.CrossRefGoogle Scholar
  126. Wiltschko, W., Wiltschko, R., Keeton, W. T., and Madden, R., 1983, Growing up in an altered magnetic field affects the initial orientation of young homing pigeons, Behav. Ecol. Sociobiol. 12: 135–142.CrossRefGoogle Scholar
  127. Windsor, D. M., 1975, Regional expression of directional preferences by experienced homing pigeons, Anim. Behav. 23: 335–343.CrossRefGoogle Scholar
  128. Wright, A. A., 1972, The infleunce of ultraviolet radiation on the pigeon’s color discrimination, J. Exp. Anal. Behav. 17: 325–337.PubMedCrossRefGoogle Scholar
  129. Yeagley, H. L., 1947, A preliminary study of a physical basis of bird navigation, J. AppJ. Phys. 18: 1035–1063.CrossRefGoogle Scholar
  130. Yeagley, H. L., 1951, A preliminary study of a physical basis of bird navigation. Part II, J. Appl. Phys 22: 746–760.CrossRefGoogle Scholar
  131. Yodlowski, M. L., Kreithen, M. L., and Keeton, W. T., 1977, Detection of atmospheric infrasound by homing pigeons, Nature 265: 725–727.PubMedCrossRefGoogle Scholar
  132. Yorke, E. D., 1979, A possible magnetic transducer in birds, J. Theor. Biol. 77: 101–105.PubMedCrossRefGoogle Scholar
  133. Yorke, E. D., 1981, Sensitivity of pigeons to small magnetic field variations, J. Theor. Biol. 89: 533–537.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • David E. Presti
    • 1
  1. 1.Departments of Biology and PsychologyUniversity of OregonEugeneUSA

Personalised recommendations