Skip to main content

Ferrimagnetic Properties of Magnetite

  • Chapter

Part of the book series: Topics in Geobiology ((TGBI,volume 5))

Abstract

Magnetite (Fe3O4, ferrous–ferric oxide) is ubiquitous as the source of the magnetism of most biological magnetic systems. Although a cation-deficient form of it, maghemite (γ- Fe2O3), and impurity-substituted magnetite (titanomagnetite) have on occasion been identified in biomagnetic systems, magnetite continues to be the primary magnetic source in biology. It is of interest, therefore, to inquire into the origin of its magnetism, or more properly, the ferrimagnetism of magnetite. In this chapter we deal with the ferrimagnetism of magnetite single crystals first. We then occupy ourselves with the application of magnetic domain theory to the particle-size-dependent properties of magnetite and the various kinds of intrinsic remanent magnetization contributed to by magnetite. The only type of natural remanent magnetization which we have not discussed here is depositional remanent magnetization (DRM), as it is still rare to find examples where biogenic magnetite has been convincingly shown to be responsible for the DRM in a sediment. Future research may prove otherwise. Finally, we deal with some practical magnetic techniques for determining the magnetic domain state, hence the effective particle size, of magnetite.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, M. E., 1975, The magnetic properties of pseudo-single domain grains, M.Sc. thesis, University of Toronto.

    Google Scholar 

  • Banerjee, S. K., 1977, On the origin of stable remanence in pseudo-single domain grains, J. Geomagn. Geoelectr. 24:319–330.

    Article  Google Scholar 

  • Banerjee, S. K., and Mellema, J. P., 1974, A new method for determination of paleointensity from the A.R.M. properties of rocks, Earth Planet. Sci. Lett. 23:177–184.

    Article  CAS  Google Scholar 

  • Banerjee, S. K., King, J., and Marvin, J., 1981, A rapid method for magnetic granulometry with applications to environmental studies, Geophys. Res. Lett. 8:333–336.

    Article  Google Scholar 

  • Bate, G., 1980, Recording materials, in: Ferromagnetic Materials, Volume 2 (E. P. Wohlfarth, ed.), North-Holland, Amsterdam, pp. 381–507.

    Google Scholar 

  • Bean, C. P., and Livingston, J. D., 1959, Superparamagnetism, J. Appl., Phys. 30:1205–1295.

    Article  Google Scholar 

  • Berkowitz, A. E., Schuele, W. J., and Flanders, P. J., 1968, Influence of crystallite size in the magnetic properties of acicular -γ-Fe2O3 particles, J. Appl. Phys. 39:1261–1263.

    Article  CAS  Google Scholar 

  • Bickford, L. R., 1953, The low temperature transformation in ferrite, Rev. Mod. Phys. 25:75–79.

    Article  CAS  Google Scholar 

  • Boľshakov, A. S., and Shcherbakova, V. V., 1979, Thermomagnetic criterion for determining the domain structure of ferrimagnetics, Phys. Solid Earth. 15:111–117.

    Google Scholar 

  • Brown, W. F., Jr., 1963, Micromagnetics, Interscience, New York.

    Google Scholar 

  • Brown, W. F., Jr., 1978, Domains, micromagnetics, and beyond: Reminiscences and assessments, J. Appl., Phys. 49:1937–1942.

    Article  CAS  Google Scholar 

  • Butler, R. F., and Banerjee, S. K., 1975, Theoretical single-domain grain size range in magnetite and titanomagnetite, J. Geophys. Res. 80:4049–4058.

    Article  CAS  Google Scholar 

  • Chikazumi, S., 1964, Physics of Magnetism, Wiley, New York.

    Google Scholar 

  • Cisowski, S., 1981, Interacting vs. non-interacting single domain behavior in natural and synthetic samples, Phys. Earth Planet. Inter. 26:52–56.

    Article  Google Scholar 

  • Clark, D. A., and Schmidt, P. W., 1982, Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure of titanomagnetites, Phys. Earth Planet. Inter. 30:300–316.

    Article  CAS  Google Scholar 

  • Clauter, D. A., and Schmidt, V. A., 1981, Shifts in blocking temperature spectra for magnetite powders as a function of grain size and applied magnetic field, Phys. Earth Planet. Inter. 26:81–92.

    Article  CAS  Google Scholar 

  • Cullity, B. D., 1972, Introduction to Magnetic Materials, Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Day, R., 1977, TRM and its variation with grain size, Adv. Earth Planet. Sci. 1:1–33.

    Google Scholar 

  • Day, R., Fuller, M. D., and Schmidt, V. A., 1977, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter. 13:1206–1216.

    Google Scholar 

  • Denham, C. R., Blakemore, R. P., and Frankel, R. B., 1980, Bulk magnetic properties of magnetostatic bacteria, IEEE Trans. Magn. Mag-16:1006–1007.

    Article  Google Scholar 

  • Dodson, M. H., and McClelland-Brown, E., 1980, Magnetic blocking temperatures of single-domain grains during slow cooling, J. Geophys. Res. 85:2625–2637.

    Article  CAS  Google Scholar 

  • Dunlop, D. J., 1968, Monodomain theory: Experimental verification, Science 162:256–258.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, D. J., 1973, Superparamagnetic and single domain threshold sizes in magnetite, J. Geophys. Res. 78:1780–1793.

    Article  Google Scholar 

  • Dunlop, D. J., 1976, Thermal fluctuation analysis: A new technique in rock magnetism, J. Geophys. Res. 81:3511–3517.

    Article  CAS  Google Scholar 

  • Dunlop, D. J., 1977, The hunting of the psark, J. Geo magn. Geoelectr. 24:243–318.

    Google Scholar 

  • Dunlop, D. J., 1981, The rock magnetism of fine particles, Phys. Earth Planet. Inter. 26:1–26.

    Article  CAS  Google Scholar 

  • Dunlop, D. J., 1983, On the demagnetizing energy and demagnetizing factor of a multidomain ferromagnetic cube, Geophys. Res. Lett. 10:79–82.

    Article  Google Scholar 

  • Dunlop, D. J., and Bina, M. M., 1977, The coercive force spectrum of magnetite at high temperatures: Evidence for thermal activation below the blocking temperature, Geophys. J. R. Astron. Soc. 51:121–147.

    Google Scholar 

  • Dunlop, D. J., and West, G. F., 1969, An experimental evaluation of single domain theories, Rev. Geophys. Space Phys. 1:709–757.

    Article  Google Scholar 

  • Dunlop, D. J., Stacey, F. D., and Gillingham, D. E. W., 1974, The origin of thermoremanent magentization: Contribution of pseudo-single-domain magnetic moments, Earth Planet. Sci. Lett. 21:288–294.

    Article  Google Scholar 

  • Evans, M. E., 1972, Single domain particles and TRM in rocks, Commun. Earth Sci. Geophys. 2:139–148.

    Google Scholar 

  • Evans, M. E., 1977, Single domain oxide particles as a source of thermoremanent magnetization, J. Geomagn. Geoelectr. 29:267–276.

    Article  CAS  Google Scholar 

  • Frankel, R. B., and Blakemore, R. P., 1980, Navigational compass in magnetic bacteria, J. Magn. Magn. Mater. 15–18:1562–1564.

    Article  Google Scholar 

  • Frankel, R. B., Blakemore, R. P., and Wolte, R. S., 1979, Magnetite in freshwater magnetotactic bacteria, Science 203:1355–1356.

    Article  PubMed  CAS  Google Scholar 

  • Frei, E. H., Shtrikman, S., and Treves, D., 1957, Critical size and nucleation field of ideal ferromagnetic particles, Phys. Rev. 106:446–455.

    Article  CAS  Google Scholar 

  • Fuller, M., 1974, Lunar magnetism, Rev. Geophys. Space Phys. 12:23–70.

    Article  Google Scholar 

  • Gillingham, D.E.W., and Stacey, F. D., 1971, Anhysteretic remanent magnetization (ARM) in magnetic grains, Pure Appl. Geophys. 8:160–165.

    Article  Google Scholar 

  • Goodenough, J. B., 1963, Magnetism and the Chemical Bond, Wiley-Interscience, New York.

    Google Scholar 

  • Gorter, E. W., 1955, Some properties of ferrites in connection with their chemistry, Proc. Inst. Radio Eng. 43:1945–1973.

    CAS  Google Scholar 

  • Halgedahl, S., and Fuller, M., 1980, Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite, Nature 288:70–72.

    Article  CAS  Google Scholar 

  • Halgedahl, S., Day, R., and Fuller, M., 1980, The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite, J. Geophys. Res. 85:3690–3698.

    Article  Google Scholar 

  • Hamilton, W. C., 1958, Neutron diffraction investigation of the 119 K transition in magnetite, Phys. Rev. 110:1050–1057.

    Article  CAS  Google Scholar 

  • Ishikawa, Y., Syono, Y., and Akimoto, S., 1964, Neutron diffraction study of Fe3O4–Fe2TiO4 series, Annu. Prog. Rep. Rock Magn. Res. Group Jpn. 14.

    Google Scholar 

  • Jacobs, I. S., and Bean, C. P., 1955, An approach to elongated fine-particle magnets, Phys. Rev. 100:1060–1067.

    Article  Google Scholar 

  • Jaep, W. F., 1971, Role of interactions in magnetic tapes, J. Appl. Phys. 42:2790–2794.

    Article  Google Scholar 

  • Johnson, C. E., and Brown, W. F., 1959, Stoner-Wohlfarth calculation on particles with both magnetocrystalline and shape anisotropy, J. Appl. Phys. 30:3205–3225.

    Article  Google Scholar 

  • Khrabrov, V. I., Onoprienko, L. G., and Shur, S. Y., 1974, Zh. Eksp. Teor. Fiz. 67:344–350 (in Russian).

    CAS  Google Scholar 

  • King, J., Banerjee, S. K., Marvin, J., and Özdemir, Ö., 1982, A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments, Earth Planet. Sci. Lett. 59:404–419.

    Article  Google Scholar 

  • Kirschvink, J. L., 1982, Paleomagnetic evidence for fossil biogenic magnetite in western Crete, Earth Planet. Sci. Letter. 54:388–392.

    Article  Google Scholar 

  • Kirschvink, J. L., and Gould, J. L., 1981, Biogenic magnetite as a basis for magnetic field detection in animals, BioSystems 13:181–201.

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink, J. L., and Lowenstam, H. A., 1979, Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentologic, and biologic implications of organic magnetic, Earth Planet. Sci. Lett. 44:193–204.

    Article  Google Scholar 

  • Kneller, E., 1969, Fine particle theory, in: Magnetism and Metallurgy, Volume 1 (A. E. Berkowitz and E. Kneller, eds.), Academic Press, New York, pp. 366–465.

    Google Scholar 

  • Kneller, E., and Luborsky, F. E., 1963, Particle size dependence of coercivity and remanence of single-domain particles, J. Appl. Phys. 34:656–658.

    Article  CAS  Google Scholar 

  • Kobayashi, K., 1959, Chemical remanent magnetization of ferromagnetic minerals and its application to rock magnetism, J. Geomagn. Geoelectr. 10:99.

    Article  CAS  Google Scholar 

  • Levi, S., and Merrill, R. T., 1976, A comparison of ARM and TRM in magnetite, Earth Planet. Sci. Lett. 32:171–184.

    Article  Google Scholar 

  • Lindsley, D. H., 1976, The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, in: Oxide Minerals Short Course Notes (D. Rumble, ed.), Southern Printing Co., Blacksburg, Va., pp. L1–L52.

    Google Scholar 

  • Lubrosky, F. E., 1961, Development of elongated particle magnets, J. Appl. Phys. 32:1715–1835.

    Article  Google Scholar 

  • McNab, T. R., Fox, R. A., and Boyle, A. J. F., 1968, Some magnetic properties of magnetic (Fe3O4) microcrystals, J. Appl. Phys. 39:5703–5711.

    Article  CAS  Google Scholar 

  • Merrill, R. T., 1981, Toward a better theory of thermal remanent magnetization, J. Geophys. Res. 86:937–949.

    Article  Google Scholar 

  • Morrish, A. H., and Watt, A. R., 1957, Effect of the interaction between magnetic particles on the critical single-domain size, Phys. Rev. 105:1476–1478.

    Article  CAS  Google Scholar 

  • Morrish, A. H., and Yu, S. P., 1955, Dependence of the coercive force on the density of some iron oxide powders, J. Appl. Phys. 26:1049–1055.

    Article  CAS  Google Scholar 

  • Moskowitz, B. M., 1981, Methods for estimating Curie temperatures of titanomaghemites from experimental J s-T data, Earth Planet. Sci. Lett. 53:84–88.

    Article  Google Scholar 

  • Moskowtiz, B., and Banerjee, S. K., 1979, Grain size limits for pseudosingle domain behavior in magnetite: Implications for paleomagnetism, IEEE Trans. Magn. Mag-15:1241–1246.

    Article  Google Scholar 

  • Murthy, G. S., and Pätzold, R., 1982, Magnetic granulometry results from intrusive rock samples, Nature 295:688–690.

    Article  Google Scholar 

  • Murthy, G. S., Evans, M. E., and Gough, D. I., 1971, Evidence for single domain magnetite in the Michikaman anorthosite, Can. J. Earth Sci. 8:361–370.

    Article  Google Scholar 

  • Nagata, T., and Kinoshita, H., 1967, Effect of hydrostatic pressure on magnetostriction and megnetocrystalline anisotropy of magnetite, Phys. Earth Planet. Inter. 1:44–48.

    Article  CAS  Google Scholar 

  • Neel, L., 1949, Théorie du traînage fmagnétique des ferromagnetiques en grains fins avel applications aux terres cuites, Ann Geophys. 5:99–136.

    Google Scholar 

  • Néel, L., 1955, Some theoretical aspects of rock magnetism, Adv. Phys. 4:191–242.

    Article  Google Scholar 

  • Parker, R., 1975, Electrical transport properties, in: Magnetic Oxides (D. J. Craik, ed.), Wiley, New York, pp. 421–482.

    Google Scholar 

  • Parry, L. G., 1965, Magnetic properties of dispersal magnetic powders, Philos. Mag. 11:303–312.

    Article  Google Scholar 

  • Pauthenet, R., 1950, Variation thermique de l’aimantation spontaneé des ferrites de nickel, cobalt, fer et manganèse, C.R. Acad. Sci. 230:1842–1844.

    CAS  Google Scholar 

  • Radhakrishnamurthy, C., Sastry, N. P., and Deutsch, E. R., 1973, Ferromagnetic behavior of interacting superparamagnetic particle aggregates in basaltic rocks, Pramana 1:61–65.

    Article  Google Scholar 

  • Rahman, A. A., Duncan, A. D., and Parry, L. G., 1973, Magnetization of multidomain magnetite particles, Riv. Ital. Geofis. 22:259–266.

    Google Scholar 

  • Rimbert, J., 1959, Contribution ál’étude de l’action de champs alternatifs sur les aimantations rémanents des roches: Applications géophysiques, Rev. Inst. Fr. Pet. 14:123–155.

    Google Scholar 

  • Sato, M., Yoshihiro, I., and Nakae, H., 1982, Magnetic domain structures and domain walls in iron fine particles, J. Appl. Phys. 53:6331–6334.

    Article  CAS  Google Scholar 

  • Schmidbauer, E., and Veitch, R. J., 1980, Anhysteretic remanent magnetization of small multidomain Fe3O4 particles dispersed in various concentrations in a non-magnetic matrix, J. Geophys. 48:148–152.

    CAS  Google Scholar 

  • Schult, A., 1970, Effects of pressure on Curie point of titanomagnetite (1-x)Fe3O4.xFe2TiO4, Earth Planet. Sci. Lett. 10:81–86.

    Article  CAS  Google Scholar 

  • Senanayake, W. E., and McElhinny, M. W., 1981, Hysteresis and susceptibility characteristics of magnetite and titanomagnetites: Interpretation of results from basaltic rocks. Phys. Earth Planet. Inter. 26:47–55.

    Article  CAS  Google Scholar 

  • Shull, C. E., Wallan, E. O., and Kochler, W. C., 1951, Neutron scattering and polarization by ferromagnetic materials, Phys. Rev. 84:912–921.

    Article  CAS  Google Scholar 

  • Smith, G., and Merrill, R. T., 1982, The determination of the internal magnetic field in magnetic grains, J. Geophys. Res. 87:9419–9423.

    Article  Google Scholar 

  • Stacey, F. D., 1963, The physical theory of rock magnetism, Adv. Phys. 12:45–133.

    Article  Google Scholar 

  • Stacey, F. D., and Banerjee, S. K., 1974, The Physical Principles of Rock Magnetism, Elsevier, Amsterdam.

    Google Scholar 

  • Stephenson, A., 1970, Single domain grain distributions method for the determination of single domain grain distributions, Phys. Earth Planet. Inter. 4:353–360.

    Article  Google Scholar 

  • Stoner, E. L., and Wohlfarth, E. P., 1948, A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. R. Soc. London Ser. A 240:599–642.

    Article  Google Scholar 

  • Sugiura, N., 1980, Field dependence of blocking temperature of single-domain magnetite, Earth Planet. Sci. Lett. 46:438–442.

    Article  Google Scholar 

  • Taylor, R. M., and Schwertmann, U., 1974, Maghemite in soils and its origin. II. Maghemite synthesis at ambient temperatures and pH 7, Clay Miner. 10:299–310.

    Article  CAS  Google Scholar 

  • Thompson, R., Bloemendal, J., Dearing, J. A., Oldfield, F., Rummery, T. A., Stober, J. C., and Turner, G. M., 1980, Environmental applications of magnetic measurements, Science 207:481–486.

    Article  PubMed  CAS  Google Scholar 

  • Towe, K. M., and Moench, T. T., 1981, Electron-optical characterization of bacterial magnetite, Earth Planet. Sci. Lett. 52:213–220.

    Article  CAS  Google Scholar 

  • Verwey, E. J. W., and Haayman, P. W., 1941, Electronic conductivity and transition point in magnetite, Physica The Hague) 8:979–987.

    Article  CAS  Google Scholar 

  • Wasilewski, P. J., 1973, Magnetic hysteresis in natural materials, Earth Planet. Sci. Lett. 20:67–72.

    Article  CAS  Google Scholar 

  • York, D., 1978, Magnetic blocking temperature. Earth Planet, Sci. Lett. 39:94–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Banerjee, S.K., Moskowitz, B.M. (1985). Ferrimagnetic Properties of Magnetite. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (eds) Magnetite Biomineralization and Magnetoreception in Organisms. Topics in Geobiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0313-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0313-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7992-8

  • Online ISBN: 978-1-4613-0313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics