Advertisement

Are Animal Maps Magnetic?

  • James L. Gould
Part of the Topics in Geobiology book series (TGBI, volume 5)

Abstract

A variety of animals travel long distances to relatively small targets (reviewed in Gould, 1982a). For example, honey bees may venture out as far as 15 km from their hive and return safely; vast numbers of monarch butterflies in the eastern United States fly thousands of kilometers to small, isolated mountain forests in Mexico; green sea turtles which hatch on tiny Ascension Island return there as adults years later from feeding grounds thousands of kilometers away; and many species of birds regularly migrate between restricted summer and winter territories, while homing pigeons can successfully return home after being displaced hundreds of kilometers. In each of these examples, the ability to navigate appears to be relatively unaffected by overcasts which block celestial cues, and all raise the question of whether animals have a “map” sense.

Keywords

Magnetic Anomaly Magnetic Storm Release Site Magnetic Compass Homing Pigeon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakemore, R. P., 1975, Magnetotactic bacteria, Science 190: 377–379.PubMedCrossRefGoogle Scholar
  2. Brines, M. L., and Gould, J. L., 1979, Bees have rules, Science 206: 571–573.PubMedCrossRefGoogle Scholar
  3. Carr, H. P., Switzer, W. P., and Hollander, W. F., 1982, Evidence for interference with navigation of homing pigeons by a magnetic storm, Iowa State J. Res. 56: 327–340.Google Scholar
  4. Dyer, F. C., and Gould, J. L., 1981, Honey bee orientation: A backup system for cloudy days, Science 214: 1041–1042.PubMedCrossRefGoogle Scholar
  5. Frankel, R. B., and Blakemore, R. P., 1980, Navigational compass in magnetic bacteria, J. Magn. Magn. Mater. 15–18: 1562–1564.CrossRefGoogle Scholar
  6. Frankel, R. B., Blakemore, R. P., and Wolfe, R. S., 1979, Magnetite in freshwater magnetic bacteria, Science 203: 1355–1357.PubMedCrossRefGoogle Scholar
  7. Frei, U., and Wagner, G., 1976, Die Anfangsorientierung von Brieftauben in erdmagnetisch gestörten Gebiet des Mont Jorat, Rev. Suisse Zool. 83: 891–897.Google Scholar
  8. Gould, J. L., 1980, The case for magnetic sensitivity in birds and bees (such as it is) Am. Sci. 68: 256–267.Google Scholar
  9. Gould, J. L., 1982a, Ethology: The Mechanisms and Evolution of Behavior, Norton, New York.Google Scholar
  10. Gould, J. L., 1982b, The map sense of pigeons, Nature 296: 205–211.CrossRefGoogle Scholar
  11. Gould, J. L., Kirschvink, J. L., and Deffeyes, K. S., 1978, Bees have magnetic remanence, Science 202: 1026–1028.CrossRefGoogle Scholar
  12. Graue, L. C., 1965, Initial orientation in pigeon homing related to magnetic contours, Am. ZooJ. 5: 704.Google Scholar
  13. Griffin, D. R., 1943, Homing experiments with herring gulls and common terns, Bird Banding 14: 7–33.CrossRefGoogle Scholar
  14. Grüter, M., Wiltschko, R., and Wiltschko, W., 1982, Distribution of release-site biases around Frankfurt, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 222–231.Google Scholar
  15. Gwinner, E., and Wiltschko, W., 1978, Endogenously controlled changes in migratory direction of the garden warbler, J. Comp. Physiol. 125: 267–273.CrossRefGoogle Scholar
  16. Hachet-Souplet, P., 1911, L’instinct du retour chez le pigeon voyageur, Rev. Sci. 29: 231–238.Google Scholar
  17. Huizinger, E., 1935, Durchschneidung aller bogengänge bei der Taub, Pflugegers Arch. Gesamte Physiol. Menschen Tiere 236: 52–58.CrossRefGoogle Scholar
  18. Jones, D. S., and McFadden, B. J., 1982, Induced magnetization in the monarch butterfly, Danaus plexippus, J. Exp. Biol. 96: 1–9.Google Scholar
  19. Kalmijn, A. J., 1978, Experimental evidence of geomagnetic orientation in elasmobranch fishes, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 135–142.Google Scholar
  20. Kalmijn, A. J., 1982, Electric and magnetic field detection in elasmobranch fishes, Science 218: 916–918.PubMedCrossRefGoogle Scholar
  21. Keeton, W. T., 1971, Magnets interfere with pigeion homing, Proc. Natl. Acad. Sci. USA 68: 102–106.PubMedCrossRefGoogle Scholar
  22. Keeton, W. T., 1974a, The orientational and navigational basis of homing in birds, Adv. Study Behav. 5: 47–132.CrossRefGoogle Scholar
  23. Keeton, W. T., 1974b, The mystery of pigeon homing, Sci. Am. 231(6): 96–107.PubMedGoogle Scholar
  24. Keeton, W. T., Larkin, T. S., and Windsor, D. M., 1974, Normal fluctuations in the earth’s magnetic field influence pigeon orientation, J. Comp. Physiol. 95: 95–103.CrossRefGoogle Scholar
  25. Kiepenheuer, J., 1978, Inversion of the magnetic field during transport: Its influence on the homing behavior of pigeons, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig, W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 135–142.Google Scholar
  26. Kiepenheuer, J., 1982, The effect of magnetic anomalies on the homing behavior of pigeons, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 120–128.Google Scholar
  27. Kirschvink, J. L., 1980, South-seeking magnetic bacteria, J. Exp. Biol. 86: 345–347.Google Scholar
  28. Kirschvink, J. L., and Gould, J. L., 1981, Biogenic magnetite as a basis for magnetic field detection in animals, BioSystems 13: 181–201.PubMedCrossRefGoogle Scholar
  29. Kluijver, H. W., 1935, Ergebnisse eines Versuches über das Heimfindevermögen von Staren, Ardea 24: 227–239.Google Scholar
  30. Larkin, T. S., and Keeton, W. T., 1976, Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation, J. Comp. Physiol. 110: 227–231.CrossRefGoogle Scholar
  31. Larkin, T. S., and Keeton, W. T., 1978, An apparent lunar rhythm in the day-to-day variations in the initial bearings of homing pigeons, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 92–106.Google Scholar
  32. Lednor, A. J., 1982, Magnetic navigation in pigeons: Possibilities and problems, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 109–119.Google Scholar
  33. Lins de Barros, H. G. P., Esquivel, D. M. S., Danon, J., and Oliveira, L. P. H., 1982, Magnetotactic algae, Acad. Bras. Cienc. Notas Fis CBPF-NF-048/81.Google Scholar
  34. Mather, J. G., and Baker, R. R., 1981, Magnetic sense of direction in woodmice for route-based navigation, Nature 291: 152–155.CrossRefGoogle Scholar
  35. Moore, B., 1980, Is the homing pigeon’s map geomagnetic?, Nature 285: 69–70.CrossRefGoogle Scholar
  36. Moore, F., 1977, Geomagnetic disturbance and the orientation of nocturnally migrating birds, Science 196: 682–684.PubMedCrossRefGoogle Scholar
  37. Papi, F., Ioale, P., Fiaschi, V., Benvenuti, S., and Baldaccini, N. E., 1978, Pigeon homing: Cues detected during the outward journey influence initial orientation, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 65–77.Google Scholar
  38. Schmidt-Koenig, K., and Walcott, C., 1978, Tracks of pigeons homing with frosted lenses, Anim. Behav. 26: 480–486.CrossRefGoogle Scholar
  39. Schreiber, B., and Rossi, O., 1976, Correlation between race arrivals of homing pigeons and solar activity, Boll. Zool. 43: 317–320.Google Scholar
  40. Schreiber, B., and Rossi, O., 1978, Correlation between magnetic storms due to solar spots and pigeon homing performances, IEEE Trans Magn. Mag-14: 961–963.CrossRefGoogle Scholar
  41. Schreiber, B., and Rossi, O., 1979, Observations on the homing behavior of pigeons during geomagnetic storms of solar origin, Ital. J. Zool. 13: 215–216.Google Scholar
  42. Talkington, L., 1967, Bird navigation and geomagnetism, Am. Zool. 7: 199.Google Scholar
  43. von Frisch, K., 1967, The Dance Language and Orientation of Bees, Harvard University Press, Cambridge, Mass.Google Scholar
  44. Wagner, G., 1976, Das orientierungsverhalten von Brieftauben im erdmagnetisch gestörten Gebiete des Chasserai, Rev. Suisse Zool. 83: 883–890.Google Scholar
  45. Walcott, C., 1978, Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 143–151.Google Scholar
  46. Walcott, C., 1980a, Magnetic orientation in homing pigeons, IEEE Trans. Magn. Mag-16: 1008–1013.CrossRefGoogle Scholar
  47. Walcott, C., 1980b, Homing-pigeon vanishing bearings at magnetic anomalies are not altered by bar magnets, J. Exp. Biol. 70: 105–123.Google Scholar
  48. Walcott, C., 1982, Is there evidence for a magnetic map in homing pigeons?, in: Avian Navigation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 99–108.Google Scholar
  49. Walcott, C., and Green, R. P., 1974, Orientation of homing pigeons is altered by a change in the direction of an applied magnetic field, Science 184: 180–182.PubMedCrossRefGoogle Scholar
  50. Walcott, C., Gould, J. L., and Kirschvink, J. L., 1979, Pigeons have magnets, Science 205: 1027–1029.PubMedCrossRefGoogle Scholar
  51. Walcott, C., and Schmidt-Koenig, K., 1973, The effect on pigeon homing of anesthesia during displacement, Auk 90: 281–286.Google Scholar
  52. Wallraff, H. G., 1965, Über das Heimfindevermögen von Brieftauben mit durchtrenuten Bogenängen, Z. Vgl. Physiol. 50: 313–330.Google Scholar
  53. Wallraff, H. G., 1972, Homing of pigeons after extirpation of their cochleae and lagenae, Nature 263: 223–224.Google Scholar
  54. Wallraff, H. G., 1980a, Does pigeon homing depend on stimuli perceived during displacement? I, J. Comp. Physiol. 139: 193–201.CrossRefGoogle Scholar
  55. Wallraff, H. G., 1980b, Does pigeon homing depend on stimuli perceived during displacement? II, J. Comp. Physiol. 139: 203–208.CrossRefGoogle Scholar
  56. Wiltschko, R., Wiltschko, W., and Keeton, W. T., 1978, Effect of outward journey in an altered magnetic field on the orientation of young homing pigeons, in: Animal Migration, Navigation, and Homing (K. Schmidt-Koenig and W. T. Keeton, eds.), Springer-Verlag, Berlin, pp. 152–161.Google Scholar
  57. Wiltschko, R., and Wiltschko, W., 1978, Evidence for the use of magnetic outward-journey information in homing pigeons, Naturwissenschaften 65: 112–113.CrossRefGoogle Scholar
  58. Wiltschko, R., Nohr, D., and Wiltschko, W., 1981, Pigeons with a deficient sun compass use the magnetic compass, Science 214: 343–345.PubMedCrossRefGoogle Scholar
  59. Wiltschko, W., 1982, The migratory orientation of garden warblers, in: Avian Naviagation (F. Papi and H. G. Wallraff, eds.), Springer-Verlag, Berlin, pp. 50–58.Google Scholar
  60. Wiltschko, W., and Wiltschko, R., 1972, Magnetic compasses of European robins, Science 176: 62–64.PubMedCrossRefGoogle Scholar
  61. Wiltschko, W., Wiltschko, R., and Keeton, W. T., 1976, Effects of a “permanent” clock-shift on the orientation of young homing pigeons, Behav. Ecol. Sociobiol. 1: 229–243.CrossRefGoogle Scholar
  62. Windsor, D. M., 1972, Directional preferences and their relation to navigation in homing pigeons, Dissertation, Cornell University.Google Scholar
  63. Windsor, D. M., 1975, Regional expression of directional preferences by experienced homing pigeons, Anim. Behav. 23: 335–343.CrossRefGoogle Scholar
  64. Yeagley, H. L., 1947, A preliminary study of a physical basis of bird navigation, J. Appl. Phys. 18: 1035–1063.CrossRefGoogle Scholar
  65. Yeagley, H. L., 1951, A preliminary study of a physical basis of bird navigation, II, J. Appl. Phys. 22: 746–760.CrossRefGoogle Scholar
  66. Zoeger, J., and Fuller, M., 1981, Magnetic material in the head of the common Pacific dolphin, Science 213: 892–894.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • James L. Gould
    • 1
  1. 1.Department of BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations