Skip to main content

Formation of Ice in frozen foods and its control by physical stimuli

  • Chapter
The Properties of Water in Foods ISOPOW 6

Abstract

The control of ice crystals during freezing and storage is one of the major factors affecting the perceived quality of foods preserved in this way. In general, a small ice crystal size leads to a better perception of taste in foods that are eaten frozen, such as ice cream, and to less structural damage and nutrient loss in frozen-thawed products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apfel, R.E. (1981) Acoustic cavitation, in Methods of Experimental Physics, Vol 19

    Google Scholar 

  • Ultrasonics Academic Press, London.

    Google Scholar 

  • Chalmers. B. (1964) Principles of Solidification, John Wiley and Sons, New York.

    Google Scholar 

  • Fletcher, N.H. (1970) The Chemical Physics of Ice, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gilmore, F.R. (1952) Hydrodynamics Laboratory Report no. 26-4 California Institute of Technology.

    Google Scholar 

  • Gitlin, S.N. and Lin, S.S. (1960) Dynamic nucleation of the ice phase in supercooled water.

    Google Scholar 

  • J. Appl. Phys.40 4761-4767.

    Google Scholar 

  • Goyer, G.G., Bhadra, T.C. and Gitlin, S. (1965) Shock induced freezing of supercooled

    Google Scholar 

  • water. J. Appl. Meteorol 4 156-160.

    Google Scholar 

  • Herring, C. (1941) Theory of the Pulsations of the Gas Bubble Produced by an Underwater

    Google Scholar 

  • Explosion. OSRD Report No. 236.

    Google Scholar 

  • Hickling, R. (1965) Nucleation of freezing by cavity collapse and its relation to cavitation

    Google Scholar 

  • damage. Nature, 206, 915-917.

    Google Scholar 

  • Hickling. R. and Plesset, M.S. (1964) Collapse and rebound of a spherical bubble in water.

    Google Scholar 

  • Phys. Fluids7 7-14.

    Google Scholar 

  • Hobbs, P.V. (1974) Ice Physics, Clarendon Press, Oxford.

    Google Scholar 

  • Hunt. J.D. and Jackson, K.A. (1966) Nucleation of the ice phase in supercooled water.

    Google Scholar 

  • J. Appl Phys37 254-257.

    Google Scholar 

  • Ives, R.L. (1941) The detection of supercooled fogs. Aeronaut. Sci, 9, 120 - 122.

    Google Scholar 

  • Ketcham, W.M. and Hobbs, P.V. (1969) An experimental determination of the surface energies of ice. Phil Mag, 19, 1161 - 1173.

    Article  CAS  Google Scholar 

  • Lindenmeyer. C.S.. Orrok, G.T., Jackson, K.A. and Chalmers, B. (1957) Rate of growth of

    Google Scholar 

  • ice crystals in supercooled water. Chem. Phys , 27 822.

    Google Scholar 

  • Maurin, J. and Medard. L. (1947) Congelation a distance d’un nuage surfondu par ondes

    Google Scholar 

  • de choc. Compt. Rend. Acad. Sci. Paris 225 432-434.

    Google Scholar 

  • Neppiras, E.A. (1980) Acoustic cavitation. Phys. Rep, 61, 163.

    Article  Google Scholar 

  • Noltingk, B.E. and Neppiras, E.A. (1950) Cavitation produced by ultrasonics. Proc. Phys

    Google Scholar 

  • Soc. London63B 674-685.

    Google Scholar 

  • Prosperetti, A (1972) Thermal effects and damping mechanisms in the forced radial oscillations of bubbles in liquids. J. Acoitsi. Soc. Amer 61 17-27.

    Google Scholar 

  • Lord Rayleigh (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag, 34, 94 - 98.

    Google Scholar 

  • Smith, M.H., Griffiths, R.F. and Latham, J. (1971) The freezing of raindrops falling through

    Google Scholar 

  • strong electric fields. Quart. J. Roy Met. Soc 97 495-505.

    Google Scholar 

  • Trilling, L. (1952) The collapse and rebound of a gas bubble. J. Appl. Phys, 23, 14 - 17.

    Article  Google Scholar 

  • Turner, C.F. and Van Hook. A. (1950) The effect of ultrasonic irradiation on the formation of colloidal sulphur and ice. J. Colloid Sci, 5, 315 - 316.

    Article  CAS  Google Scholar 

  • Weast, R.C. (1974) Handbook of Chemistry and Physics. 55th Edition, CRC Press, Cleveland.

    Google Scholar 

  • Wylie. R.G. (1953) The freezing of supercooled water in glass. Proc. Phys. Soc. London 66B, 674 - 685.

    Google Scholar 

  • Young, S.W. and Van Sicklen, W.J. (1913) The mechanical stimulus to crystallisation. J. Amer. Chem. Soc 35, 1067 - 1078.

    Article  CAS  Google Scholar 

  • 16

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Thomson Science

About this chapter

Cite this chapter

Kennedy, C.J. (1998). Formation of Ice in frozen foods and its control by physical stimuli. In: Reid, D.S. (eds) The Properties of Water in Foods ISOPOW 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0311-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0311-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7991-1

  • Online ISBN: 978-1-4613-0311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics