Algae as food



Algae have been used as human food for thousands of years in all parts of the world. The most commonly consumed macroalgae include the red algae Porphyra (nori, kim, laver), Asparagopsis taxiformis (limu), Gracilaria,Chondrus crispus (Irish moss) and Palmaria palmata (dulse), the kelps Laminaria (kombu), Undaria (wakame) and Macrocystis, and the green algae Caulerpa racemosa,Codium and Ulva (see Tseng, 1981; Drueh1,1988; Mumford & Miura, 1988 for reviews). These algae are either harvested from wild populations or are farmed. These algae usually are eaten either fresh, dried or pickled (Abbott, 1988). Several macroalgae are also the source of hydrocolloids such as agar-agar and carrageenan which are widely used in the food industry as stabilisers, thickeners and gelling agents.


Algal Culture Spirulina Platensis Phaeodactylum Tricornutum Patent Number Raceway Pond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, I.A. (1988) Food and food production from seaweeds, in Algae and Human Affairs (eds C.A. Lembi & J R Waaland), Cambridge University Press, Cambridge, pp. 135–47.Google Scholar
  2. Anon. (1995) Culturing method providing algae containig docosahexaenoic acid. Japan Patent Number 7,075,557.Google Scholar
  3. Bajpai, P. & Bajpai, P.K. (1992) Arachidonic acid production by microorganisms. Biotechnology and Applied Biochemistry, 15 1–10.Google Scholar
  4. Bajpai, P. & Bajpai, P.K. (1993) Eicosapentaenoic acid (EPA) production from microorganisms - a review. Journal of Biotechnology, 30 161–83.CrossRefGoogle Scholar
  5. Bajpai, P.K., Bajpai, P. & Ward, O.P. (1991a) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. Journal of the American Oil Chemists Society, 68 509–14.CrossRefGoogle Scholar
  6. Bajpai, P., Bajpai, P.K. & Ward, O.P. (1991b) Production of docosahexaenoic acid by Thraustochytrium aureum. Applied Microbiology and Biotechnology, 35 706–10.Google Scholar
  7. Barclay, W.R., Meager, K.M. & Abril, J.R. (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology, 6 123–9.CrossRefGoogle Scholar
  8. Becker, E.W. (1988) Micro-algae for human and animal consumption, in Micro-algal Biotechnology (eds M.A. Borowitzka & L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 222–56.Google Scholar
  9. Becker, E.W. & Venkatamaran, L.V. (1980) Production and processing of algae in pilot plant scale. Experiences of the Indo-German project, in Algae Biomass (eds G. Shelef & C.J. Soeder), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 35–50.Google Scholar
  10. Becker, E.W. & Venkataraman, L.V. (1982) Biotechnology and Exploitation of Algae - The Indian Approach. German Agency for Technical Co-op., Eschborn.Google Scholar
  11. Belay, A., Ota, Y., Miyakawa, K. & Shimamatsu, H. (1993) Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 5 235–41.CrossRefGoogle Scholar
  12. Belay, A., Ota, Y., Miyakawa, K. & Shimamatsu, H. (1994) Production of high quality Spirulina at Earthrise Farms, in Algal Biotechnology in the Asia-Pacific Region (eds S.M. Phang, K. Lee, M.A. Borowitzka & B. Whitton), Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp. 92–102.Google Scholar
  13. Ben-Amotz, A., Katz, A. & Avron, M. (1982) Accumulation of 13-carotene in halotolerant algae: purification and characterisation of (3-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). Journal of Phycology, 18 529–37.CrossRefGoogle Scholar
  14. Ben-Amotz, A., Lers, A. & Avron, M. (1988) Stereoisomers of 13-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiology, 86 1286–91.CrossRefGoogle Scholar
  15. Bizzi, A., Chiesara, E., Clementi, F., Della Torre, P., Marabini, L., Rizzi, R. & Villa, A. (1980) Trattamenti prolungati nel ratto con diete contenenti proteine di Spirulina. Aspetti biochimici, morfologici e tossicologici, in Prospettive della coltura di Spirulina in Italia (ed. R. Materassi), Accademia dei Georgofili, Firenze, pp. 205–28.Google Scholar
  16. Borowitzka, M.A. (1988) Microalgae as sources of essential fatty acids. Australian Journal of Biotechnology, 1, 58–62.Google Scholar
  17. Borowitzka, M.A. (1992) Comparing carotenogenesis in Dunaliella and Haematococcus: Implications for commercial production strategies, in Profiles on Biotechnology (eds T.G. Villa & J. Abalde), Universidade de Santiago de Compostela, Santiago de Compostela, pp. 301–10.Google Scholar
  18. Borowitzka, M.A. (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7 3–15.CrossRefGoogle Scholar
  19. Borowitzka, M.A. (1996) Closed algal photobioreactors: design considerations for large-scale systems. Journal of Marine Biotechnology, 4 185–91.Google Scholar
  20. Borowitzka, L.J. & Borowitzka, M.A. (1989a) Industrial production: methods and economics, in Algal and Cyanobacterial Biotechnology (eds R.C. Cresswell, T.A.V. Rees & N. Shah), Longman Scientific, London, pp. 294–316.Google Scholar
  21. Borowitzka, L.J. & Borowitzka, M.A. (1989b) G3-Carotene (Provitamin A) production with algae, in Biotechnology of Vitamins, Pigments and Growth Factors (ed. E.J. Vandamme), Elsevier Applied Science, London, pp. 15–26.Google Scholar
  22. Borowitzka, L.J., Moulton, T.P. & Borowitzka, M.A. (1985) Salinity and the commercial production of beta-carotene from Dunaliella salina. Nova Hedw., Beih., 81 217–22.Google Scholar
  23. Burgess, J.G., Iwamoto, K., Miura, Y., Takano, H. & Matsunaga, T. (1993) An optical fibre photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX-LB-2307) rich in docosahexaenoic Acid. Applied Microbiology and Biotechnology, 39 456–9.CrossRefGoogle Scholar
  24. Chamorro, G. & Salazar, M. (1990) Teratogenic study of Spirulina in mice. Archives of Latinoamerican Nutrition, 40 86–94.Google Scholar
  25. Chaumont, D., Thepenier, C., Gudin, C. & Junjas, C. (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum from laboratory to pilot plant (19811987), in Algal Biotechnology (eds T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan & D. Christiaen), Elsevier Applied Science, London, pp. 199–208.Google Scholar
  26. Chaumont, D., Dos Santos, P.F., Gudin, C., Assise, D. & Chaintron, G. (1993) Dispositif de production intensive et contrôlée de micro-organismes photosynthétiques fragiles. France Patent Number 2685344.Google Scholar
  27. Chen, F. & Johns, M.R. (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotophic Chlorella sorokiniana . Journal of Applied Phycology, 3 203–9.CrossRefGoogle Scholar
  28. Chrismadha, T. & Borowitzka, M.A. (1994a) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. Journal of Applied Phycology, 6 6774.CrossRefGoogle Scholar
  29. Chrismadha, T. & Borowitzka, M.A. (1994b) Growth and lipid production of Phaeodactylum tricornutum in a tubular photobioreactor, in Algal Biotechnology in the Asia-Pacific Region (eds S.M. Phang, Y.K. Lee, M.A. Borowitzka & B.A. Whitton), Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp. 122–9.Google Scholar
  30. Ciferri, O. (1983) Spirulina, the edible microorganism. Microbiology Reviews, 47 551–78.Google Scholar
  31. Cohen, E. & Arad, S. (1989) A closed system for outdoor cultivation of Porphyridium. Biomass, 18 59–67.CrossRefGoogle Scholar
  32. Curtain, C.C. & Snook, H. (1983) Method for harvesting algae. International Patent Number W083/01257.Google Scholar
  33. Curtain, C.C., West, S.M. & Schlipalius, L. (1987) Manufacture of β-carotene from the salt lake alga Dunaliella salina; the scientific and technical background. Australian Journal of Biotechnology, 1, 51–7.Google Scholar
  34. Daintith, M. (1993) Live Feeds for Marine Aquaculture: a Training Guide, Aquaculture Sourcebook, Launceston.Google Scholar
  35. Dodd, J.C. (1986) Elements of pond design and construction, in CRC Handbook of Microalgal Mass Culture (ed. A. Richmond), CRC Press, Boca Raton, pp. 265–83.Google Scholar
  36. Druehl, L.D. (1988) Cultivated edible kelp, in Algae and Human Affairs (eds C.A. Lembi & J.R. Waaland), Cambridge University Press, Cambridge, pp. 119–34.Google Scholar
  37. Grobbelaar, J.U., Nedbal, L., Tichy, L. & Setlik, I. (1995) Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors. Journal of Applied Phycology, 7 175–84.CrossRefGoogle Scholar
  38. Groeneweg, J. (1978) Einsatz hängender Plastikschläuche zur Massenkultur fädiger Algen. Archives of Hydrobiology Supplenant,51 349–54.Google Scholar
  39. Hansakul, W. (1995) Chlorella nutrients and its beneficial properties, in Mass Cultures of Microalgae (eds V. Thirakhupt & V. Boonakijjinda), Proceedings of the Research Seminar and Workshop, Silpakorn University, Thailand. November 18–23, 1991. UNESCO, Thailand, pp. P9–P25.Google Scholar
  40. Hilaly, A.K., Karim, M.N. & Guyre, D. (1994) Optimization of an industrial microalgae fermentation. Biotechnology and Bioengineering, 43 314–20.CrossRefGoogle Scholar
  41. Jassby, A. (1988a) Some public health aspects of microalgal products, in Algae and Human Affairs (eds C.A. Lembi & J.R. Waaland), Cambridge University Press, Cambridge, pp. 181–202.Google Scholar
  42. Jassby, A. (1988b) Spirulina: a model for microalgae as human food, in Algae and Human Affairs (eds C.A. Lembi & J.R. Waaland), Cambridge University Press, Cambridge, pp. 149–79.Google Scholar
  43. Kapoor, R. & Mehta, U. (1992) Development and sensory evaluation of Spirulina supplemented recipes, in Spirulina. ETTA National Symposium (eds C.V. Seshadri & Bai N. Jeeji), MCRC, Madras, pp. 134–9.Google Scholar
  44. Kapoor, R. & Mehta, U. (1993) Effect of supplementation of blue green alga (Spirulina) on outcome of pregnancy in rats. Plant Foods for Human Nutrition, 43 29–35.CrossRefGoogle Scholar
  45. Kawaguchi, K. (1980) Microalgae production systems in Asia, in Algae Biomass Production and Use (eds G. Shelef & C.J. Soeder), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 25–33.Google Scholar
  46. Kyle, D.J. (1992) Microbial oil mixtures and uses thereof. World Patent Number 9,212,711.Google Scholar
  47. Kyle, D.J. & Gladue, R.M. (1991) Eicosapentaenoic acids and methods for their production. World Patent Number 9,114,427.Google Scholar
  48. Kyle, D.J., Reeb, S.E. & Sicotte, V.J. (1991) Docosahexaenoic acid, methods for its production and compounds containing the same. World Patent Number 9,111,918.Google Scholar
  49. Lee, Y.K., Ding, S.Y., Low, C.S., Chang, Y.C., Forday, W.L. & Chew, P.C. (1995) Design and performance of an alpha-type tubular photobioreactor for mass cultivation of microalgae. Journal of Applied Phycology, 7 47–51.CrossRefGoogle Scholar
  50. Levin, G. & Mokady, S. (1994) Antioxidant activity of 9-cis compared to all-trans beta-carotene in vitro. Free Radical Biology and Medicine, 17 77–82.CrossRefGoogle Scholar
  51. Levin, G., Ben-Amotz, A. & Mokady, S. (1994) Liver accumulation of soluble all-trans or 9-cis beta-carotene in rats and chicks. Comparative Biochemistry and Physiology, A, 107 203–7.CrossRefGoogle Scholar
  52. Martinez, M.R. (1988) Nostoc comune Vauch., A nitrogen-fixing blue-green alga, as source of food in the Philippines. Philippine Agriculture, 71 295–307.Google Scholar
  53. Miki, K., Tajima, O., Matsuura, E., Yamada, K. & Fukimbara, T. (1980) Isolation and identification of a photodynamic agent of Chlorella. Japanese Agriculture and Chemical Society Journal, 54 721–26.CrossRefGoogle Scholar
  54. Mitchell, G.V., Grundel, E., Jenkins, M. & Blakely, S.R. (1990) Effects of graded dietary levels of Spirulina maxima on vitamin-A and vitamin-E in male rats. Journal of Nutrition, 120 1235–40.Google Scholar
  55. Mohn, F.H. (1988) Harvesting of micro-algal bimomass, in Micro-Algal Biotechnology (eds M.A. Borowitzka & L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 395–414.Google Scholar
  56. Mohn, F.H. (1992) Technique and cost distribution for harvesting the microalga Dunaliella sauna and impact on β-carotene production, in Proceedings, 1st European Workshop on Microalgal Biotechnology, Institut für Getreideverarbeitung, Potsdam, pp. 7–12.Google Scholar
  57. Mokady, S. (1992) Nutritional, toxicological and therapeutic aspects, in Dunaliella: Physiology, Biochemistry, and Biotechology (eds M. Avron & A. Ben-Amotz), CRC Press, Boca Raton, pp. 217–29.Google Scholar
  58. Mokady, S., Avron, M. & Ben-Amotz, A. (1990) Accumulation in chick livers of 9-cis versus all-trans β-Carotene. Journal of Nutrition, 120 889–92.Google Scholar
  59. Mori, K., Ohya, H., Matsumoto, K. & Furune, H. (1987) Sunlight supply and gas exchange systems in microalgal bioreactor, in Controlled ecological life support system (eds R.D. MacElroy & D.T. Smernoff), NASA, Moffett Field, California, pp. 45–50.Google Scholar
  60. Moulton, T.P., Sommer, T.R., Burford, M.A. & Borowitzka, L.J. (1987) Competition between Dunaliella species at high salinity. Hydrobiologia, 151/152 107–16.CrossRefGoogle Scholar
  61. Mumford, T.F. & Miura, A. (1988) Porphyra as food: cultivation and economics, in Algae and Human Affairs (eds C.A. Lembi & J.R. Waaland), Cambridge University Press, Cambridge, pp. 87–117.Google Scholar
  62. Nonomura, A.M. (1987) Process for producing a naturally derived carotene-oil composition by direct ectraction from algae. U.S. Patent Number 4680314.Google Scholar
  63. Oswald, W.J. (1988) Large-scale algal culture systems (engineering aspects), in Micro-Algal Biotechnology (eds M.A. Borowitzka & L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 357–94.Google Scholar
  64. Pirt, S.J., Lee, Y.K., Walach, M.R., Pirt, M.M., Balyuzi, H.H.M. & Bazin, M.J. (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. Journal of Chemical Technology and Biotechnology, 33B 35–58.Google Scholar
  65. Pohl, P., Kohlhase, M. & Martin, M. (1988) Photobioreactors for the axenic mass cultivation of microalgae, in Algal Biotechnology (eds T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan & D. Christiaen), Elsevier Applied Science, London, pp. 209–17.Google Scholar
  66. Qin, H., Yu, G. & Yuan, S. (1994) Collecting Dunaliella and extracting beta-carotene. China Patent Number 1,084,848.Google Scholar
  67. Richmond, A. (1988) Spirulina, in Micro-Algal Biotechnology (eds M.A. Borowitzka & L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 85–121.Google Scholar
  68. Richmond, A., Lichtenberg, E., Stahl, B. & Vonshak, A. (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. Journal of Applied Phycology, 2 195–206.CrossRefGoogle Scholar
  69. Richmond, A., Boussiba, S., Vonshak, A. & Kopel, R. (1993) A new tubular reactor for mass production of microalgae outdoors. Journal of Applied Phycology, 5, 327–32.CrossRefGoogle Scholar
  70. Robinson, L.F., Morrison, A.W. & Bamforth, M.R. (1988) Improvements relating to biosyn-thesis. European Patent Number 261,872.Google Scholar
  71. Ruane, M. (1974) Recovery of algae from brine suspensions. Australia Patent Number 486 999.Google Scholar
  72. Rüegg, R. (1984) Extraction process for beta-carotene. U.S. Patent Number 4439629.Google Scholar
  73. Running, J.A., Huss, R.J. & Olson, P.T. (1994) Heterotrophic production of ascorbic acid by microalgae. Journal of Applied Phycology, 6 99–104.CrossRefGoogle Scholar
  74. Schlipalius, L. (1991) The extensive commercial cultivation of Dunaliella salina . Bioresource Technology, 38 241–3.CrossRefGoogle Scholar
  75. Seshadri, C.V. & Jeeji Bai, N. (eds) (1992) Spirulina. ETTA National Symposium. MCRC, Tharamani, Madras.Google Scholar
  76. Shimamatsu, H. (1987) A pond for edible Spirulina production and its hydraulic studies. Hydrobiologia, 151/152 83–9.Google Scholar
  77. Shinmen, Y., Kawashima, H., Shimizu, S. & Yamada, H. (1992) Concentration of eicosapentaenoic acid and docosahexaenoic acid in an arachidonic acid-producing fungus, Mortierella alpina 1S-4, grown with fish oil. Applied Microbiology and Biotechnology,38 301–4.CrossRefGoogle Scholar
  78. Shubert, L.E. (1988) The use of Spirulina (Cyanophyceae) and Chlorella (Chlorophyceae) as food sources for animals and humans. Progress in Phycological Research,6 237–54.Google Scholar
  79. Silva, H.J. & Cortinas, T.I. (1994) Vertical thin-layer photoreactor for controlled cultivation of cyanobacteria. World Journal of Microbiological Biotechnology, 10 145–8.CrossRefGoogle Scholar
  80. Soong, P. (1980) Production and development of Chlorella and Spirulina in Taiwan, in Algae Biomass (eds G. Shelef & C.J. Soeder), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 97–113.Google Scholar
  81. Takeuchi, D. & Uehara, K. (1993) Docosahexaenoic acid production eliminating generation of fish malodour. World Patent Number 9320225.Google Scholar
  82. Tamura, Y., Maki, T., Shimamura, Y., Nishigaki, S. & Naoi, Y. (1979) Causal substances of photosensitive dermatitis due to Chlorella ingestion. Food Hygene Journal,22 183–8.Google Scholar
  83. Tornabene, T.G., Kates, M. & Volcani, B.E. (1974) Sterols, aliphatic hydrocarbons, and fatty acids of a nonphotosynthetic diatom Nitzschia alba. Lipids, 9 279–84.CrossRefGoogle Scholar
  84. Torzillo, G., Pushparaj, B., Bocci, F., Balloni, W., Materassi, R. & Florenzano, G. (1986) Production of Spirulina biomass in closed phtobioroeactors. Biomass, 11 61–4.CrossRefGoogle Scholar
  85. Torzillo, G., Carlozzi, P., Pushparaj, B., Montaini, E. & Materassi, R. (1993) A 2-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnology and Bioengineering,42 891–8.CrossRefGoogle Scholar
  86. Tredici, M.R., Carlozzi, P., Zittelli, G.C. & Materassi, R. (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Technology, 38 153–9.CrossRefGoogle Scholar
  87. Tseng, C.K. (1981) Commercial cultivation, in The Biology of Seaweeds (eds C.S. Lobban & M.J. Wynne), Blackwell Scientific, Oxford, pp. 680–725.Google Scholar
  88. Vonshak, A. (1987) Strain selection of Spirulina suitable for mass production. Hydrobiologia, 151/152 75–7.CrossRefGoogle Scholar
  89. Vonshak, A. & Guy, R. (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Plant and Cell Environment, 15 613–16.CrossRefGoogle Scholar
  90. Wohlgeschaffen, G.D., Rao, D.V.S. & Mann, K.H. (1992) Vat incubator with immersion core illumination - a new, inexpensive setup for mass phytoplankton culture. Journal of Applied Phycology, 4 25–9.CrossRefGoogle Scholar
  91. Yoshino, Y., Hirai, Y., Takahashi, H., Yamamoto, N. & Yamazaki, N. (1980) The chronic intoxication test on Spirulina product fed to Wistar rats. Japanese Journal of Nutrition, 38 221–6.Google Scholar
  92. Zarrouk, C. (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima, Doctoral Thesis University of Paris.Google Scholar

Copyright information

© Thomson Science 1998

Authors and Affiliations

There are no affiliations available

Personalised recommendations