Skip to main content

Knapsack Problems

  • Chapter

Abstract

Knapsack Problems are the simplest NP-hard problems in Combinatorial Optimization, as they maximize an objective function subject to a single resource constraint. Several variants of the classical 0–1 Knapsack Problem will be considered with respect to relaxations, bounds, reductions and other algorithmic techniques for the exact solution. Computational results are presented to compare the actual performance of the most effective algorithms published.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Ahrens and G. Finke (1975), “Merging and Sorting Applied to the Zero-One Knapsack Problem”, Operations Research, 23, 1099–1109.

    Article  MATH  Google Scholar 

  2. L. Aittoniemi (1982), “Computational comparison of knapsack algorithms”, presented at XIth International Symposium on Mathematical Programming, Bonn, August 23–27.

    Google Scholar 

  3. G. d’Atri, C. Puech (1982), “Probabilistic analysis of the subset-sum problem”, Discrete Applied Mathematics, 4, 329–334.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Avis (1980) Theorem 4. In V. Chvâtal, “Hard knapsack problems”, Operations Research, 28, 1410–1411.

    Google Scholar 

  5. E. Balas (1975), “Facets of the Knapsack Polytope”, Mathematical Programming, 8, 146–164.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Balas and E. Zemel (1980), “An Algorithm for Large Zero-One Knapsack Problems”, Operations Research, 28, 1130–1154.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Barcia and K. Jörnsten (1990), “Improved Lagrangean decomposition: An application to the generalized assignment problem”, European Journal of Operational Research, 46, 84–92.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. E. Bellman (1957), Dynamic programming, Princeton University Press, Princeton, NJ.

    Google Scholar 

  9. R. L. Bulfin, R. G. Parker and C. M. Shetty (1979), “Computational results with a branch and bound algorithm for the general knapsack problem”, Naval Research Logistics Quarterly, 26, 41–46.

    Article  MATH  Google Scholar 

  10. R. E. Burkard and U. Pferschy (1995), “The Inverse-parametric Knapsack Problem”, European Journal of Operational Research, 83 376–393.

    Article  MATH  Google Scholar 

  11. A. Caprara, D. Pisinger, P. Toth (1997), “Exact Solution of Large Scale Quadratic Knapsack Problems”, Abstracts ISMP’97, EPFL, Lausanne, 24–29 August 1997.

    Google Scholar 

  12. A. K. Chandra, D. S. Hirschberg, C. K. Wong (1976), “Approximate algorithms for some generalized knapsack problems”. Theoretical Computer Science, 3, 293–304.

    Article  MathSciNet  Google Scholar 

  13. N. Christofides, A. Mingozzi, P. Toth (1979). “Loading Problems”. In N. Christofides, A. Mingozzi, P. Toth, C. Sandi (eds.), Combinatorial Optimization, Wiley, Chichester, 339–369.

    Google Scholar 

  14. V. Chvâtal (1980), “Hard Knapsack Problems”, Operations Research, 28, 1402–1411.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. H. Cormen, C. E. Leiserson and R. L. Rivest (1990), Introduction to Algorithms, MIT Press, Massachusetts.

    MATH  Google Scholar 

  16. H. Crowder, E.L. Johnson, M.W. Padberg (1983), “Solving large-scale zero-one linear programming problems”, Operations Research, 31, 803–834.

    Article  MATH  Google Scholar 

  17. G. B. Dantzig (1957), “Discrete Variable Extremum Problems”, Operations Research, 5, 266–277.

    Article  MathSciNet  Google Scholar 

  18. R. S. Dembo and P. L. Hammer (1980), “A Reduction Algorithm for Knapsack Problems”, Methods of Operations Research, 36, 49–60.

    MATH  MathSciNet  Google Scholar 

  19. B. L. Dietrich and L. F. Escudero (1989), “More coefficient reduction for knapsack-like constraints in 0–1 programs with variable upper bounds”, IBM T.J.,Watson Research Center,RC-14389,Yorktown Heights N. Y.

    Google Scholar 

  20. B. L. Dietrich and L. F. Escudero (1989), “New procedures for preprocessing 0–1 models with knapsack-like constraints and conjunctive and/or disjunctive variable upper bounds”, IBM T.J., Watson Research Center, RC-14572, Yorktown Heights N.Y.

    Google Scholar 

  21. W. Diffe and M. E. Hellman (1976), “New directions in cryptography”, IEEE Trans. Inf. Theory, IT-36, 644–654.

    Google Scholar 

  22. K. Dudzinski (1991), “A note on dominance relations in unbounded knapsack problems”, Operations Research Letters, 10, 417–419.

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Dudzinski and S. Walukiewicz (1984), “A fast algorithm for the linear multiple-choice knapsack problem”, Operations Research Letters, 3, 205–209.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Dudzinski and S. Walukiewicz (1987), “Exact Methods for the Knapsack Problem and its Generalizations”, European Journal of Operational Research, 28, 3–21.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. E. Dyer (1984), “An O(n) algorithm for the multiple-choice knapsack linear program”, Mathematical Programming, 29, 57–63.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. E. Dyer, N. Kayal and J. Walker (1984), “A branch and bound algorithm for solving the multiple choice knapsack problem”, Journal of Computational and Applied Mathematics, 11, 231–249.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. F. Escudero, S. Martello and P. Toth (1995), “A framework for tightening 0–1 programs based on an extension of pure 0–1 KP and SS problems”, In: E. Balas, J. Clausen (eds.): Integer Programming and Combinatorial Optimization, Fourth IPCO Conference. Lecture Notes in Computer Science, 920, 110–123.

    Google Scholar 

  28. D. Fayard and G. Plateau (1977), “Reduction algorithm for single and multiple constraints 0–1 linear programming problems”, Conference on Methods of Mathematical Programming, Zakopane (Poland).

    Google Scholar 

  29. D. Fayard and G. Plateau (1982), “An Algorithm for the Solution of the 0–1 Knapsack Problem”, Computing, 28, 269–287.

    Article  MATH  Google Scholar 

  30. D. Fayard and G. Plateau (1994), “An exact algorithm for the 0–1 collapsing knapsack problem”, Discrete Applied Mathematics, 49, 175–187.

    Article  MATH  MathSciNet  Google Scholar 

  31. C.E. Ferreira, M. Grötsche, S. Kieft, C. Krispenz, A. Martin and R. Weismantel (1993), “Some integer programs arising in the design of mainframe computers”, ZOR, 38 77–100.

    MATH  Google Scholar 

  32. C. E. Ferreira, A. Martin, C. de Souza, R. Weismantel and L. Wolsey (1994), “Formulations and valid inequalities for the node capacitated graph partitioning problem”, CORE discussion paper, 9437, Unversité Catholique de Louvain.

    Google Scholar 

  33. C.E. Ferreira, A. Martin, R. Weismantel (1996), “Solving multiple knapsack problems by cutting planes”, SIAM Journal on Optimization, 6, 858–877.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Fischetti and S. Martello (1988), “A hybrid algorithm for finding the kth smallest of n elements in O(n) time. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds), Fortran codes for Network Optimization,Annals of Operations Research,13 401–419.

    Google Scholar 

  35. M. Fischetti and P. Toth (1988), “A new dominance procedure for combinatorial optimization problems”, Operations Research Letters, 7, 181–187.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. L. Fisher (1981), “The Lagrangian Relaxation Method for Solving Integer Programming Problems”, Management Science, 27, 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Fréville G. Plateau (1993), “An exact search for the solution of the surrogate dual for the 0–1 bidimensional knapsack problem”, European Journal of Operational Research, 68, 413–421.

    Article  MATH  Google Scholar 

  38. A.M. Frieze, M.R.B. Clarke (1984), “Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analysis”, European Journal of Operational Research, 15, 100–109.

    Article  MATH  MathSciNet  Google Scholar 

  39. G. Gallo, P.L. Hammer, B. Simeone (1980), “Quadratic knapsack problems”, Mathematical Programming 12 132–149.

    MATH  MathSciNet  Google Scholar 

  40. M. R. Garey and D. S. Johnson (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco.

    MATH  Google Scholar 

  41. B. Gavish and H. Pirkul (1985), “Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality” Mathematicial Programming, 31, 78–105.

    Article  MATH  MathSciNet  Google Scholar 

  42. G. Gens and E. Levner (1994), “A fast approximation algorithm for the subset-sum problem”, INFOR, 32, 143–148.

    MATH  Google Scholar 

  43. P. C. Gilmore and R. E. Gomory (1965), “Multistage cutting stock problems of two and more dimensions”, Operations Research, 13, 94–120.

    Article  MATH  Google Scholar 

  44. P. C. Gilmore and R. E. Gomory (1966), “The theory and computation of knapsack functions”, Operations Research, 14, 1045–1074.

    Article  MathSciNet  Google Scholar 

  45. F. Glover (1965), “A multiphase dual algorithm for the zero-one integer programming problem”, Operations Research, 13, 879–919.

    Article  MATH  MathSciNet  Google Scholar 

  46. A.V. Goldberg, A. Marchetti-Spaccamela (1984), “On finding the exact solution to a zero-one knapsack problem”, Proc. 16th Annual ACM Symposium Theory of Computing, 359–368.

    Google Scholar 

  47. H. Greenberg (1985), “An algorithm for the periodic solutions in the knapsack problem”, Journal of Mathematical Analysis and Applications, 111, 327–331.

    Article  MATH  MathSciNet  Google Scholar 

  48. H. Greenberg (1986), “On equivalent knapsack problems”, Discrete Applied Mathematics, 14, 263–268.

    Article  MATH  MathSciNet  Google Scholar 

  49. H. Greenberg, I. Feldman (1980), “A better-step-off algorithm for the knapsack problem”, Discrete Applied Mathematics, 2, 21–25.

    Article  MATH  MathSciNet  Google Scholar 

  50. P.L. Hammer, E.L. Johnson, U.N. Peled (1975), “Facets of regular 0–1 polytopes”, Mathematical Programming, 8 179–206.

    Article  MATH  MathSciNet  Google Scholar 

  51. D. S. Hirschberg and C. K. Wong (1976), “A polynomial time algorithm for the knapsack problem with two variables”, Journal of ACM, 23 147–154.

    Article  MATH  MathSciNet  Google Scholar 

  52. D.S. Hochbaum (1995), “A Nonlinear Knapsack Problem”, Operations Research Letters, 17, 103–110.

    Article  MATH  MathSciNet  Google Scholar 

  53. K. L. Hoffman and M. Padberg (1993), “Solving airline crew-scheduling problems by branch and cut”, Management Science, 39, 657–682.

    Article  MATH  Google Scholar 

  54. E. Horowitz and S Sahni (1974), “Computing partitions with applications to the Knapsack Problem”, Journal of ACM, 21, 277–292.

    Article  MATH  MathSciNet  Google Scholar 

  55. M. S. Hung and J. C. Fisk (1978), “An algorithm for 0–1 multiple knapsack problems”, Naval Research Logistics Quarterly, 24, 571–579.

    Article  MathSciNet  Google Scholar 

  56. T. Ibaraki (1987), “Enumerative Approaches to Combinatorial Optimization — Part 1”, Annals of Operations Research, 10.

    Google Scholar 

  57. T. Ibaraki (1987), “Enumerative Approaches to Combinatorial Optimization — Part 2”, Annals of Operations Research, 11.

    Google Scholar 

  58. H. Ibarra and C.E. Kim (1975), “Fast approximation algorithms for the knapsack and sum of subset problem”, Journal of ACM, 22, 463–468.

    Article  MATH  MathSciNet  Google Scholar 

  59. G. P. Ingargiola and J. F. Korsh (1973), “A Reduction Algorithm for Zero-One Single Knapsack Problems”, Management Science, 20, 460–463.

    Article  MATH  Google Scholar 

  60. G. P. Ingargiola and J. F. Korsh (1975), “An algorithm for the solution of 0–1 loading problems”, Operations Research, 23, 752–759.

    Article  MathSciNet  Google Scholar 

  61. G. P. Ingargiola and J. F. Korsh (1977), “A general algorithm for the one-dimensional knapsack problem”, Operations Research, 25, 752–759.

    Article  MATH  MathSciNet  Google Scholar 

  62. R. G. Jeroslow (1974), “Trivial Integer Programs Unsolvable by Branchand-Bound”, Mathematical Programming, 6, 105–109.

    Article  MATH  Google Scholar 

  63. E.L. Johnson and M.W. Padberg (1981), “A note on the knapsack probem with special ordered sets”, Operations Research Letters, 1, 1822.

    Article  MathSciNet  Google Scholar 

  64. R. Kannan (1980), “A polynomial algorithm for the two-variables integer programming problem”, Journal of ACM, 27, 118–122.

    Article  MATH  MathSciNet  Google Scholar 

  65. G. A. P. Kindervater and J. K. Lenstra (1986), “An introduction to parallelism in combinatorial optimization”, Discrete Applied Mathematics, 14, 135–156.

    Article  MATH  MathSciNet  Google Scholar 

  66. D.E. Knuth (1973), The art of Computer Programming,Vo.3,Sorting and Searching, Addison-Wesley, Reading, MA.

    Google Scholar 

  67. P. J. Kolesar (1967), “A branch and bound algorithm for the knapsack problem”, Management Science, 13, 723–735.

    Article  Google Scholar 

  68. D. Krass, S.P. Sethi and G. Sorger (1994), “Some complexity issues in a class of knapsack problems: What makes a Knapsack Problem ‘hard’ ”, INFOR, 32, 149–162.

    MATH  Google Scholar 

  69. J.C. Lagarias, A.M. Odlyzko (1983), “Solving low-density subset sum problems”, Proc. 2.4 th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, 7–9 November 1983, 1–10.

    Google Scholar 

  70. G. Laporte (1992), “The Vehicle Routing Problem: An overview of exact and approximate algorithms”, European Journal of Operational Research, 59, 345–358.

    Article  MATH  Google Scholar 

  71. G. S. Lueker (1975), “Two NP-complete problems in nonnegative integer programming”, Report No. 178, Computer Science Laboratory, Priceton University, Princeton, NJ.

    Google Scholar 

  72. S. Martello and P. Toth (1977), “An Upper Bound for the Zero-One Knapsack Problem and a Branch and Bound algorithm”, European Journal of Operational Research, 1, 169–175.

    Article  MATH  MathSciNet  Google Scholar 

  73. S. Martello and P. Toth (1977), “Branch and bound algorithms for the solution of general unidimensional knapsack problems”. In M. Roubens (ed.), Advances in Operations Research, North-Holland, Amsterdam, 295–301.

    Google Scholar 

  74. S. Martello and P. Toth (1979), “The 0–1 knapsack problem”. In A. Mingozzi, P. Toth, C. Sandi (ed.), Combinatorial Optimization, Wiley, Chichester, 237–279.

    Google Scholar 

  75. S. Martello and P. Toth (1980), “Solution of the zero-one multiple knapsack problem”, European Journal of Operational Research, 4, 276–283.

    Article  MATH  MathSciNet  Google Scholar 

  76. S. Martello and P. Toth (1981), “A bound and bound algorithm for the zero-one multiple knapsack problem”, Discrete Applied Mathematics, 3, 275–288.

    Article  MATH  MathSciNet  Google Scholar 

  77. S. Martello and P. Toth (1984), “A mixture of dynamic programming and branch-and-bound for the subset-sum problem”, Management Science, 30, 765–771.

    Article  MATH  MathSciNet  Google Scholar 

  78. S. Martello, and P. Toth (1987), “Algorithms for Knapsack Problems”.In S. Martello, G. Laporte, M. Minoux and C. Ribeiro (Eds.), Surveys in Combinatorial Optimization, Ann. Discrete Math. 31, North-Holland,Amsterdam, 1987, 213–257.

    Google Scholar 

  79. S. Martello and P. Toth (1988), “A New Algorithm for the 0–1 Knapsack Problem”, Management Science, 34, 633–644.

    Article  MATH  MathSciNet  Google Scholar 

  80. S. Martello and P. Toth (1990), Knapsack Problems: Algorithms and Computer Implementations, Wiley, Chichester, England.

    MATH  Google Scholar 

  81. S. Martello and P. Toth (1990), “An exact algorithm for large unbounded knapsack problems”, Operations Research Letters, 9, 15–20.

    Article  MATH  MathSciNet  Google Scholar 

  82. S. Martello and P. Toth (1995), “The bottleneck generalized assignment problem”, European Journal of Operational Research, 83 621–638.

    Article  MATH  Google Scholar 

  83. S. Martello and P. Toth (1997), “Upper Bounds and Algorithms for Hard 0–1 Knapsack Problems”, Operations Research, 45, 768–778.

    Article  MATH  MathSciNet  Google Scholar 

  84. G. B. Mathews (1897), “On the Partition of Numbers”, Proc. of the London Mathematical Society, 28, 486–490.

    Article  MATH  Google Scholar 

  85. T. L. Morin and R. E. Marsten (1976), “An algorithm for nonlinear knapsack problems”, Management Science, 22, 1147–1158.

    Article  MATH  MathSciNet  Google Scholar 

  86. H. Müller-Merbach (1979), “Improved upper bound for the zero-one knapsack problem. A note on the paper by Martello and Toth”, European Journal of Operational Research, 2, 212–213.

    Article  Google Scholar 

  87. J. I. Munro, R. J. Ramirez (1982), “Reducing Space Requirements for Shortest Path Problems”, Operations Research, 30, 1009–1013.

    Article  MATH  Google Scholar 

  88. R. M. Nauss (1976), “An Efficient Algorithm for the 0–1 Knapsack Problem”, Management Science, 23, 27–31.

    Article  MATH  Google Scholar 

  89. R. M. Nauss (1978), “The 0–1 knapsack problem with multiple choice constraint”, European Journal of Operational Research, 2, 125–131.

    Article  MATH  MathSciNet  Google Scholar 

  90. A. Neebe and D Dannenbring (1977), “Algorithms for a specialized segregated storage problem”, University of North Carolina, Technical Report 77–5.

    Google Scholar 

  91. G. L. Nemhauser and Z. Ullmann (1969), “Discrete dynamic programming and capital allocation”, Management Science, 15, 494–505.

    Article  MathSciNet  Google Scholar 

  92. G.L. Nemhauser and L.A. Wolsey (1988), Integer and Combinatorial Optimization, Wiley, Chichester.

    MATH  Google Scholar 

  93. M.W. Padberg (1975), “A note on zero-one programming”, Operations Research, 23, 833–837.

    Article  MATH  MathSciNet  Google Scholar 

  94. C. H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  95. U. Pferschy, D. Pisinger, G.J. Woeginger (1997), “Simple but Efficient Approaches for the Collapsing Knapsack Problem”, Discrete Applied Mathematics, 77, 271–280

    Article  MATH  MathSciNet  Google Scholar 

  96. D. Pisinger (1995), “An expanding-core algorithm for the exact 0–1 knapsack problem,” European Journal of Operational Research, 87, 175–187.

    Article  MATH  Google Scholar 

  97. D. Pisinger (1994), “Core Problems in Knapsack Algorithms”, DIKU, University of Copenhagen, Denmark, Report 94/26. Submitted Operations Research, conditionally accepted.

    Google Scholar 

  98. D. Pisinger (1994), “Dominance Relations in Unbounded Knapsack Problems”, DIKU, University of Copenhagen, Denmark, Report 94/33. Submitted European Journal of Operational Research.

    Google Scholar 

  99. D. Pisinger (1995), “An O(nr) Algorithm for the Subset Sum Problem”, DIKU, University of Copenhagen, Denmark, Report 95/6.

    Google Scholar 

  100. D. Pisinger (1995), “A minimal algorithm for the Bounded Knapsack Problem”, In: E. Galas, J. Clausen (eds.): Integer Programming and Combinatorial Optimzation,Fourth IPCO conference.Lecture Notes in Computer Science, 920, 95–109.

    Google Scholar 

  101. D. Pisinger (1995), “The Multiple Loading Problem”, Proc. NOAS’95, University of Reykjavik, 18–19 August 1995. Submitted European Journal of Operational Research

    Google Scholar 

  102. D. Pisinger (1995), “A minimal algorithm for the Multiple-choice Knapsack Problem,” European Journal of Operational Research, 83, 394–410.

    Article  MATH  Google Scholar 

  103. D. Pisinger (1996), “Strongly correlated knapsack problems are trivial to solve”, Proc. CO96, Imperial College of Science, Technology and Medicine, London 27–29 March 1996. Submitted Discrete Applied Mathematics.

    Google Scholar 

  104. D. Pisinger (1996), “The Bounded Multiple-choice Knapsack Problem”, Proc. AIRO’96 Perugia, 16–20 September 1996, 363–365.

    Google Scholar 

  105. D. Pisinger (1997), “A minimal algorithm for the 0–1 knapsack problem”, Operations Research, 45, 758–767.

    Article  MATH  MathSciNet  Google Scholar 

  106. G. Plateau and M. Elkihel (1985), “A hybrid method for the 0–1 knapsack problem”, Methods of Operations Research, 49, 277–293.

    MATH  MathSciNet  Google Scholar 

  107. S.A. Plotkin, D.B. Shmoys, E. Tardos (1991), “Fast approximation algorithms for fractional packing and covering problems”, Proc. 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1–4 October 1991, 495–504.

    Google Scholar 

  108. T. J. van Roy and L. A. Wolsey (1987), “Solving mixed integer programming problems using automatic reformulation”, Operations Research, 35, 45–57.

    Article  MATH  MathSciNet  Google Scholar 

  109. A. Sinha and A. A. Zoltners (1979), “The multiple-choice knapsack problem”, Operations Research, 27, 503–515.

    Article  MATH  MathSciNet  Google Scholar 

  110. The Standard Performance Evaluation Corporation, http://www/specbench.org

  111. M. M. Syslo, N. Deo, J. S. Kowalik (1983), Discrete Optimization Algorithms, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  112. P. Toth (1980), “Dynamic programming algorithms for the zero-one knapsack problem”, Computing, 25, 29–45.

    Article  MATH  MathSciNet  Google Scholar 

  113. R. Weismantel (1995), “Knapsack Problems, Test Sets and Polyhedra”, Habilitationsschrift, TU Berlin, June 1995.

    Google Scholar 

  114. C. Witzgal (1977), “On One-Row Linear Programs”, Applied Mathematics Division, National Bureau of Standards.

    Google Scholar 

  115. L.A. Wolsey (1975), “Facets of linear inequalities in 0–1 Variables”, Mathematical Programming, 8, 165–178.

    Article  MATH  MathSciNet  Google Scholar 

  116. E. Zemel (1980), “The linear multiple choice knapsack problem”, Operations Research, 28, 1412–1423.

    Article  MATH  MathSciNet  Google Scholar 

  117. E. Zemel (1984), “An 0(n) algorithm for the linear multiple choice knapsack problem and related problems”, Information Processing Letters, 18, 123–128.

    Article  MATH  MathSciNet  Google Scholar 

  118. A.A. Zoltners (1978), “A direct descent binary knapsack algorithm”, Journal of ACM, 25, 304–311.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pisinger, D., Toth, P. (1998). Knapsack Problems. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics