Skip to main content

Approximate Algorithms and Heuristics for MAX-SAT

  • Chapter

Abstract

In the Maximum Satisfiability (MAX-SAT) problem one is given a Boolean formula in conjunctive normal form, i.e., as a conjunction of clauses, each clause being a disjunction. The task is to find an assignment of truth values to the variables that satisfies the maximum number of clauses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Achlioptas, L. M. Kirousis, E. Kranakis, and D. Krinzac, Rigorous results for random (2+p)-SAT, Proc. Work. on Randomized Algorithms in Sequential, Parallel and Distributed Computing, Santorini, Greece, 1997.

    Google Scholar 

  2. P. Alimonti, New local search approximation techniques for maximum generalized satisfiability problems, Proc. Second Italian Conf. on Algorithms and Complexity, Rome, 1994, pp. 40–53.

    Google Scholar 

  3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hardness of approximation problems, Proc. 33rd Annual IEEE Symp. on Foundations of Computer Science, IEEE Computer Society, 1992, pp. 14–23.

    Google Scholar 

  4. S. Arora and S. Safra Probabilistic checking of proofs: a new characterization of NPProc. 33rd Annual IEEE Symp. on Foundations of Computer Science, IEEE Computer Society, 1992, pp. 2–13.

    Google Scholar 

  5. T. Asano Approximation algorithms for MAX-SAT: Yannakakis vs. G oemans- WilliamsonProc. 3rd Israel Symp. on the Theory of Computing and Systems, Ramat Gan, Israel, 1997, pp. 24–37.

    Google Scholar 

  6. T. Asano, T. Ono, and T. Hirata Approximation algorithms for the maximum satisfiability problemProc. 5th Scandinavian Work. on Algorithms Theory, 1996, pp. 110–111.

    Google Scholar 

  7. P. Asirelli, M. de Santis, and A. M.rtelli,Integrity constraints in logic databases, Journal of Logic Programming 3 (1985), 221–232.

    Google Scholar 

  8. G. Ausiello, P. Crescenzi, and M. Protasi, Approximate solution of NP optimization problems, Theoretical Computer Science 150 (1995), 1-55.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Ausiello, A. D’Atri, and M. Protasi, Lattice theoretic properties of NP-complete problems, Fundamenta Informaticae 4 (1981), 83–94.

    MATH  MathSciNet  Google Scholar 

  10. G. Ausiello and M. Protasi Local search reducibility and approximability of NP-optimization problemsInformation Processing Letters 54 (1995), 73–79.

    Google Scholar 

  11. R.Battiti,Reactive search: Toward self-tuning heuristics, Modern Heuristic Search Methods (V.J. Rayward-Smith,I. H. Osman, C.R. Reeves, and G.D. Smith, eds.),John Wiley and Sons, 1996, pp. 61–83.

    Google Scholar 

  12. R. Battiti and M. Protasi Reactive search a history-sensitive heuristic for MAX-SATACM Journal of Experimental Algorithmics 2 (1997), no. 2 http://www.jea.acm.org/.

    Google Scholar 

  13. Solving MAX-SAT with non-oblivious functions and history-based heuristics,Satisfiability Problem: Theory and Applications, DI-MACS: Series in Discrete Mathematics and Theoretical Computer Science, no. 35, AMS and ACM Press, 1997.

    Google Scholar 

  14. R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing 6 (1994), no. 2, 126–140.

    MATH  Google Scholar 

  15. C.E. Blair, R.G. Jeroslow, and J.K. Lowe, Some results and experiments in programming for propositional logic, Computers and Operations Research 13 (1986), no. 5, 633–645.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Boehm and E. Speckenmeyer A fast parallel sat solver - efficient workload balancingAnnals of Mathematics and Artificial Intelligence 17 (1996), 381–400.

    Google Scholar 

  17. A. Broder, A. Frieze, and E. Upfal On the satisfiability and maximum satisfiability of random 3-CNF formulasProc. of the 4th Annual ACM-SIAM Symp. on Discrete Algorithms, 1993.

    Google Scholar 

  18. M. Buro and H. Kleine Buening, Report on a SAT competition, EATCS Bulletin 49 (1993), 143–151.

    MATH  Google Scholar 

  19. S. Chakradar, V. Agrawal, and M. Bushnell, Neural net and boolean satisfiability model of logic circuits, IEEE Design and Test of Computers (1990), 54–57.

    Google Scholar 

  20. M.-T. Chao and J. Franco Probabilistic analysis of two heuristics for the 3-satisfiability problemSIAM Journal on Computing 15 (1986), 1106–1118.

    Google Scholar 

  21. J. Chen, D. Friesen, and H. Zheng Tight bound on Johnson’s algorithm for MAX-SATProc. 12th Annual IEEE Conf. on Computational Complexity, Ulm, Germany, 1997, pp. 274–281.

    Google Scholar 

  22. J. Cheriyan, W. H. Cunningham, T. Tuncel, and Y. Wang A linear programming and rounding approach to MAX 2-SATProc. of the Second DIMACS Algorithm Implementation Challenge on Cliques, Coloring and Satisfiability (M. Trick and D. S. Johson, eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science, no. 26, 1996, pp. 395–414.

    Google Scholar 

  23. V. Chvatal and B. Reed, Mick gets some (the odds are on his side), Proc. 33th Ann. IEEE Symp. on Foundations of Computer Science, IEEE Computer Society, 1992, pp. 620–627.

    Google Scholar 

  24. V. Chvâtal and E. Szemerédi, Many hard examples for resolution, Journal of the ACM 35 (1988), 759–768.

    Article  MATH  Google Scholar 

  25. S.A. Cook, The complexity of theorem-proving procedures,Proc. of the Third Annual ACM Symp. on the Theory of Computing, 1971, pp. 151-158.

    Google Scholar 

  26. S.A. Cook and D.G. Mitchell Finding hard instances of the satisfiability problem: a surveySatisfiability Problem: Theory and Applications D.-Z. Du, J. Gu, and P.M. Pardalos, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35,AMS and ACM Press, 1997.

    Google Scholar 

  27. P. Crescenzi and A. Panconesi, Completeness in approximation classes,Information and Computation 93 (1991), 241–262.

    Google Scholar 

  28. M. Davis, G. Logemann, and D. Loveland A machine program for theorem provingCommunications of the ACM 5 (1962) 394–397.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Davis and H. Putnam A computing procedure for quantification theoryJournal of the ACM 7 (1960) 201–215.

    Article  MathSciNet  Google Scholar 

  30. D. Du, J. Gu, and P.M. Pardalos (Eds.), Satisfiability problem: Theory and applications,DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35,AMS and ACM Press, 1997.

    Google Scholar 

  31. O. Dubois and Y. Boufkhad, A general upper bound for the satisfiability threshold of random r-SAT formulas,Tech. report, LAFORIA, CNRSUniv. Paris 6, 1996.

    Google Scholar 

  32. U. Feige and M.X. Goemans, Approximating the value of two proper proof systems, with applications to MAX-2SAT and MAX-DICUT,Proc. of the Third Israel Symp. on Theory of Computing and Systems, 1995, pp. 182–189.

    Google Scholar 

  33. J. Franco and M. Paull, Probabilistic analysis of the davis-putnam procedure for solving the satisfiability problem,Discrete Applied Mathematics 5 (1983), 77–87.

    Google Scholar 

  34. A. Frieze and S. Suen Analysis of two simple heuristics on a random instance of k-SATJournal of Algorithms 20 (1996) 312–355.

    Article  MATH  MathSciNet  Google Scholar 

  35. H. Gallaire, J. Minker, and J. M. Nicolas Logic and databases: a deductive approachComputing Surveys 16 (1984)no. 2 153–185.

    Article  MathSciNet  Google Scholar 

  36. I.P. Gent and T. Walsh An empirical analysis of search in gsatJournal of Artificial Intelligence Research 1 (1993) 47–59.

    Google Scholar 

  37. , Towards an understanding of hill-climbing procedures for SAT,Proc. of the Eleventh National Conf. on Artificial Intelligence, AAAI Press/The MIT Press, 1993, pp. 28–33.

    Google Scholar 

  38. F. Glover Tabu search - part IORSA Journal on Computing 1 (1989)no. 3 190–260.

    MathSciNet  Google Scholar 

  39. M.X. Goemans and D.P. Williamson New 3/4-approximation algorithms for the maximum satisfiability problemSIAM Journal on Discrete Mathematics 7 (1994), no. 4, 656–666.

    Google Scholar 

  40. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJournal of the ACM 42 (1995), no. 6, 1115–1145

    Google Scholar 

  41. A. Goerdt A threshold for unsatisfiabilityJournal of Computer and System Sciences 53 (1996), 469–486

    Article  MathSciNet  Google Scholar 

  42. J. Gu Efficient local search for very large-scale satisfiability problemACM SIGART Bulletin 3 (1992), no. 1, 8–12

    Google Scholar 

  43. Global optimization for satisfiability (SAT) problem,IEEE Transactions on Data and Knowledge Engineering 6 (1994), no. 3, 361381.

    Google Scholar 

  44. J. Gu, Q.-P. Gu, and D.-Z.Du, Convergence properties of optimization algorithms for the SAT problem, IEEE Transactions on Computers 45 (1996), no. 2, 209–219.

    Article  MATH  Google Scholar 

  45. J. Gu, P.W. Purdom, J. Franco, and B.W. Wah, Algorithms for the satisfiability (SAT) problem: A survey, Satisfiability Problem: Theory and Applications (D.-Z. Du, J. Gu, and P.M. Pardalos, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, AMS and ACM Press, 1997.

    Google Scholar 

  46. J. Gu and R. Puri Asynchronous circuit synthesis with boolean satisfiabilityIEEE Transactions on Computer-Aided Design of Integrated Circuits 14 (1995), no. 8, 961–973

    Google Scholar 

  47. P.L. Hammer, P. Hansen, and B. Simeone Roof duality complementation and persistency in quadratic 0–1 optimizationMathematical Programming 28 (1984), 121–155

    Google Scholar 

  48. P. Hansen and B. Jaumard Algorithms for the maximum satisfiability problemComputing 44 (1990), 279–303.

    Google Scholar 

  49. J.N. Hooker Resolution vs. cutting plane solution of inference problems: some computational experienceOperations Research Letters 7 (1988), no. 1, 1–7.

    Article  MathSciNet  Google Scholar 

  50. J. Hâstad, Some optimal inapproximability results, Proc. 28th Annual ACM Symp. on Theory of Computing, El Paso, Texas, 1997, pp. 1–10.

    Google Scholar 

  51. B. Jaumard, M. Stan, and J. Desrosiers, Tabu search and a quadratic relaxation for the satisfiability problem,Proc. of the Second DIMACS Algorithm Implementation Challenge on Cliques, Coloring and Satisfiability (M. Trick and D. S. Johson, eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science, no. 26, 1996, pp. 457477.

    Google Scholar 

  52. D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences 9 (1974), 256–278.

    Article  MathSciNet  Google Scholar 

  53. D.S. Johnson and M. Trick (Eds.), Cliques, coloring, and satisfiability: Second DIMA CS implementation challenge, vol. 26, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, no. 26, AMS, 1996.

    Google Scholar 

  54. J.L. Johnson, A neural network approach to the 3-satisfiability problem, Journal of Parallel and Distributed Computing 6 (1989), 435–449.

    Article  Google Scholar 

  55. A. Kamath, R. Motwani, K. Palem, and P. Spirakis, Tail bounds for occupancy and the satisfiability threshold conjecture, Random Structures and Algorithms 7 (1995), 59–80.

    Article  MATH  MathSciNet  Google Scholar 

  56. A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G. Re-sende, Computational exprience with an interior point algorithm on the satisfiability problem, Annals of Operations Research 25 (1990), 43–58.

    Article  MATH  MathSciNet  Google Scholar 

  57. A continuous approach to inductive inference,Mathematical programming 57 (1992), 215–238.

    Google Scholar 

  58. H. Karloff and U. Zwick, A 7/8-approximation algorithm for MAX 3SAT?,Proc. of the 38th Annual IEEE Symp. on Foundations of Computer Science, IEEE Computer Society, 1997, in press.

    Google Scholar 

  59. S. Khanna, R.Motwani, M.Sudan, and U.Vazirani, On syntactic versus computational views of approximability, Proc. 35th Ann. IEEE Symp. on Foundations of Computer Science, IEEE Computer Society, 1994, pp. 819–836.

    Google Scholar 

  60. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983), 671–680.

    Article  MATH  MathSciNet  Google Scholar 

  61. S. Kirkpatrick and B. Selman, Critical behavior in the satisfiability of random boolean expressions, Science 264 (1994), 1297–1301.

    Article  MATH  MathSciNet  Google Scholar 

  62. L.M. Kirousis, E. Kranakis, and D. Krizanc Approximating the unsatisfiability threshold of random formulasProc. of the Fourth Annual European Symp. on Algorithms (Barcelona), Springer-Verlag, September 1996, pp. 27–38.

    Google Scholar 

  63. E. Koutsoupias and C.H. Papadimitriou, On the greedy algorithm for satisfiability, Information Processing Letters 43 (1992), 53–55.

    Article  MATH  MathSciNet  Google Scholar 

  64. O. Kullmann and H. Luckhardt Deciding propositional tautologies: Algorithms and their complexityTech. Report 1596, JohannWolfgang Goethe-Univ., Fachbereich Mathematik, Frankfurt, Germany, January 1997.

    Google Scholar 

  65. D.W. Loveland, Automated theorem proving: A logical basis, North-Holland, 1978.

    Google Scholar 

  66. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair methodProc. of the 8th National Conf. on Artificial Intelligence (AAAI-90), 1990, pp. 17–24.

    Google Scholar 

  67. D. Mitchell, B. Selman, and H. Levesque Hard and easy distributions of SAT problemsProc. of the 10th National Conf. on Artificial Intelligence (AAAI-92) (San Jose, Ca), July 1992, pp. 459–465.

    Google Scholar 

  68. R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University Press, New York, 1995.

    MATH  Google Scholar 

  69. T.A. Nguyen, W.A. Perkins, T.J. Laffrey, and D. Pecora, Checking an expert system knowledge base for consistency and completeness, Proc. of the International Joint Conf. on Artificial Intelligence (Los Altos, CA ), 1985, pp. 375–378.

    Google Scholar 

  70. P. Nobili and A. Sassano, Strengthening lagrangian bounds for the MAX-SAT problem,Tech. Report 96–230, Institut fuer Informatik, Koln Univ., Germany, 1996, Proc. of the Work. on the Satisfiability Problem, Siena, Italy (J. Franco and G. Gallo and H. Kleine Buening, Eds.).

    Google Scholar 

  71. P. Orponen and H. Mannila, On approximation preserving reductions: complete problems and robust measures, Tech. Report C-1987–28, Dept. of Computer Science, Univ. of Helsinki, 1987.

    Google Scholar 

  72. C. H. Papadimitriou On selecting a satisfying truth assignment (extended abstract)Proc. of the 32th Annual Symp. on Foundations of Computer Science, 1991, pp. 163–169.

    Google Scholar 

  73. C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization, algorithms and complexity, Prentice-Hall, NJ, 1982.

    Google Scholar 

  74. R. Puri and J. Gu, A BDD SAT solver for satisfiability testing: an industrial case study, Annals of Mathematics and Artificial Intelligence 17 (1996), no. 3–4, 315–337.

    Article  MATH  MathSciNet  Google Scholar 

  75. M.G.C. Resende and T. A. Feo, A grasp for satisfiability, Proc. of the Second DIMACS Algorithm Implementation Challenge on Cliques, Coloring and Satisfiability (M. Trick and D. S. Johson, eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science, no. 26, 1996, pp. 499–520.

    Google Scholar 

  76. M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos Approximate solution of weighted MAX-SAT problems using GRASPSatisfiability Problem: Theory and Applications, DIMACS: Series in Discrete Mathematics and Theoretical Computer Sc ience, no. 35, 1997.

    Google Scholar 

  77. J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12 (1965), 23–41.

    Article  MATH  Google Scholar 

  78. B. Selman and H. Kautz Domain-independent extensions to GSAT: Solving large structured satisfiability problemsProc. of the International Joint Conf. on Artificial Intelligence, 1993, pp. 290–295.

    Google Scholar 

  79. B. Selman and H.A. Kautz An empirical study of greedy local search for satisfiability testingProc. of the 11th National Conf. on Artificial Intelligence (AAAI-93) (Washington, D. C.), 1993.

    Google Scholar 

  80. B. Selman, H.A. Kautz, and B. Cohen, Local search strategies for satisfiability testing, Proc. of the Second DIMACS Algorithm Implementation Challenge on Cliques, Coloring and Satisfiability (M. Trick and D. S. Johson, eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science, no. 26, 1996, pp. 521–531.

    Google Scholar 

  81. B. Selman, H. Levesque, and D. Mitchell A new method for solving hard satisfiability problemsProc. of the 10th National Conf. on Artificial Intelligence (AAAI-92) (San Jose, Ca), July 1992, pp. 440–446.

    Google Scholar 

  82. W.M. Spears, Simulated annealing for hard satisfiability problems, Proc. of the Second DIMACS Algorithm Implementation Challenge on Cliques, Coloring and Satisfiability (M. Trick and D. S. Johnson, eds.), DIMACS Series on Discrete Mathematics and Theoretical Computer Science, no. 26, 1996, pp. 533–555.

    Google Scholar 

  83. L. Trevisan, Approximating satisfiable satisfiability problems, Proc. of the 5th Annual European Symp. on Algorithms, Graz, Springer Verlag, 1997, pp. 472–485.

    Google Scholar 

  84. M. Yannakakis On the approximation of maximum satisfiabilityJournal of Algorithms 17(1994), 475–502.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Battiti, R., Protasi, M. (1998). Approximate Algorithms and Heuristics for MAX-SAT . In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics