Hp and Lp Extensions of Holomorphic Functions from Subvarieties to Some Convex Domains

  • Kenzo Adachi
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 4)

Abstract

Using the integral formula for holomorphic functions in subvarieties, we study the extension of holomorphic functions from subvarieties to convex domains in some function spaces.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adachi, K. (1980). Continuation of A∞ functions from submanifolds to strictly pseudoconvex domains,J. Math. Soc. Japan, Vol.32, (pages 331–341).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Adachi, K. (1987). Continuation of bounded holomorphic functions from cetain subvarieties to weakly pseudoconvex domains, Pacific J. Math., Vol. 130, (pages 1–8 ).MathSciNetMATHGoogle Scholar
  3. [3]
    Adachi, K. (1994). Continuation of holomorphic functions from subvarieties to pseudoconvex domains, Kobe J. Math., Vol. 11, (pages 33–47 ).MathSciNetMATHGoogle Scholar
  4. [4]
    Adachi, K. and Cho, H. R. HP and LP extensions of holomorphic functions fom subvarieties to certain convex domains, To appear in Math. J. Toyama Univ.Google Scholar
  5. [5]
    Adachi, K., Andersson, M. and Cho, H. R. L P and HP extensions of holomorphic functions from subvarieties of analytic polyhedrasubmitted.Google Scholar
  6. [6]
    Adachi, K. and Kajimoto, H. (1993). On the extension of Lipschitz functions from boundaries of subvarieties to strongly pseudoconvex domains, Pacific J. Math., Vol. 158, (pages 201–222 ).MathSciNetMATHGoogle Scholar
  7. [7]
    Ahern, P. and Schneider, R. (1979). Holomorphic Lipschitz fucntions in pseudoconvex domains, Amer. J. Math., Vol. 101, (pages 543–565 ).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Amar, E. (1983). Extension de fonctions holomorphes et courants, Bull. Soc. Math., Vol. 107, (pages 25–48 ).MathSciNetMATHGoogle Scholar
  9. [9]
    Amar, E. (1984). Cohomologie complexe et applications, J. London Math. Soc., Vol. 29, (pages 127–140 ).MathSciNetCrossRefGoogle Scholar
  10. [10]
    Beatrous, F. (1985). L P estimates for extensions of holomophic functions, Michigan J. Math., Vol. 32, (pages 361–380 ).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Berndtsson, B. (1983). Interpolation and division in Cn, Math. Ann., Vol. 263, (pages 399–419 ).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Chen, S. C. (1990). Real analytic boundary regularity of the Cauchy transform on convex domains, Proc. Amer. Math. Soc., Vol. 108, (pages 423–432 ).Google Scholar
  13. [13]
    Cumenge, A. (1983). Extension dans des classes de Hardy de fonctions holomorphes et estimation de type“measures de Carleson„pour l’equation ∂, Ann.Inst. Fourier, Vol. 33, (pages 59–97 ).Google Scholar
  14. [14]
    Elgueta, M. (1980). Extensions to strictly pseudoconvex domains of functions holomorphic in a submanifold in general position, Ill. J. Math., Vol. 24, (pages 1–17 ).MathSciNetGoogle Scholar
  15. [15]
    Fornaess, J. (1976). Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., Vol. 98, (pages 529–569 ).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Hamada, H. and Tsuji, M. (1996). Counterexample of a bounded domain for Ohsawa’s problem, Complex Variables, Vol. 28, (pages 285–287 ).MathSciNetGoogle Scholar
  17. [17]
    Hatziafratis, T. (1986). Integral repesentation formulas on analytic varieties, Pacific J. Math., Vol. 123, (pages 71–91 ).MathSciNetMATHGoogle Scholar
  18. [18]
    Henkin, G. M. (1969). Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR Sbornik, Vol. 7, (pages 597–616 ).MATHCrossRefGoogle Scholar
  19. [19]
    Henkin, G. M. (1972). Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains,Izv. Akad. Nauk SSSR, Vol. 36, (pages 540–567 ).MathSciNetMATHGoogle Scholar
  20. [20]
    Henkin, G. M. and Poljakov, P. L. (1984). Prolongement des fonctions holomorphes borné d’une sous-variété du polydisue, C. R. Acad. Sci. Paris, Vol. 298, (pages 221–224 ).Google Scholar
  21. [21]
    Jakobczak, P. (1983). On the regularity of extension to strictly pseudoconvex domains of functions holomorphic in a submanifold in general position, Ann. Polon. Math., Vol. 42, (pages 115–124 ).MathSciNetMATHGoogle Scholar
  22. [22]
    Mazzili, E. (1995). Extension des fonctions holomorphes, C. R. Acad. Sci. Paris, Vol. 321, (pages 831–836 ).Google Scholar
  23. [23]
    Ohsawa, T. (1988). On the extension of L 2 holomorphic functions II, Publ. RIMS, Kyoto Univ., Vol. 26, (pages 265–275 ).MathSciNetCrossRefGoogle Scholar
  24. [24]
    Ohsawa, T. and Takegoshi, K. (1987). On the extension of L 2 holomorphic functions, Math. Z., Vol. 195, (pages 197–204 ).Google Scholar
  25. [25]
    Ramirez, E. (1970). Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann., Vol. 184, (pages 172–187 ).MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Range, R. M. (1986). Holomorphic functions and integral representations in several complex variables,Springer.Google Scholar
  27. [27]
    Stout, E. L. (1975). An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces,Duke Math. J., Vol. 42, (pages 347–356).MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Tsuji, M. (1995). Counterexample of an unbounded domain for Ohsawa’s problemComplex Variables, Vol. 27, (pages 335–338).MathSciNetMATHGoogle Scholar
  29. [29]
    Verdera, J. (1984). L∞-continuity of Henkin operators solving ∂ in certain weakly pseudoconvex domains of C2Proc. Royal Soc. Edinburgh, Vol. 99A, (pages 25–33).MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Kenzo Adachi
    • 1
  1. 1.Department of MathematicsNagasaki UniversityNagasakiJapan

Personalised recommendations