Wavelength Assignment Algorithms for WDM Ring Architectures

Part of the Network Theory and Applications book series (NETA, volume 6)


Self-healing wavelength-division-multiplexing (WDM) rings are the leading candidate architectures for high capacity local exchange carrier (LEC) networks [1, 2, 3, 4, 5, 6], because of the survivability capabilities they provide and the fact that their capacity can be shared by all the nodes connected to a ring. Self-healing ring (SHR) architectures provide restoration capability for a single link and network switch failure through their ring topology and simple but fast automatic protection switching schemes. These architectures are best suited to the implementation of high capacity Local Area Networks (LAN’s), interoffice, or university campus networks [7].


Optical Network Wavelength Conversion Wavelength Assignment Ring Network Lightwave Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.S. Acampora, The scalable lightwave network, IEEE Communications Mag. Vol. 32 No. 12 (1994) pp. 36–42.CrossRefGoogle Scholar
  2. [2]
    S.B. Alexander, R.S. Bondurant, D. Byrne, V.W.S. Chan, S.G. Finn, R. Gallager, B.S. Glance, H.A. Haus, P. Humblet, R. Jain, I.P. Kaminow, M.J. Karol, R.S. Kennedy, A. Kirby, H.Q. Le, A.A.M. Saleh, B.A. Schofield, H.H. Shapiro, N.K. Shankaranarayanan, R.E. Thomas, R.C. Williamson and R.W. Wilson, A precompetitive consortium on wide-band all optical networks, IEEE/OSA Journal of Lightwave Technology Vol. 11 No. 5/6 (1993) pp. 714–735.CrossRefGoogle Scholar
  3. [3]
    C.A. Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE Journal on Selected Areas in Communications Vol. 8 No. 6 (1990) pp. 948–964.CrossRefGoogle Scholar
  4. [4]
    C.A. Brackett, A.S. Acampora, J. Sweitzer, G. Tangonan, M.T. Smith, W. Lennon, K.C. Wang and R. H. Hobbs, A scalable multiwavelength multihop optical network: A proposal for research on all-optical networks, IEEE/OSA Journal of Lightwave Technology Vol. 11 No. 5/6 (1993) pp. 736–753.CrossRefGoogle Scholar
  5. [5]
    G.R. Hill, P.J. Chidgey, F. Kaufhold, T. Lynch, O. Sahlen, M. Gustaysson, M. Janson, B. Lagerstrom, G. Grasso, F. Meli, S. Johansson, J. Ingers, L. Fernandez, S. Rotolo, A. Antonielli, S. Tebaldini, E. Vezzoni, R. Caddedu, N. Capanio, F. Testa, A. Scavennec, M.J. O’Mahony, J. Zhou, A. Yu, W. Sohler, U. Rust and H. Herrmann, Multi-wavelength transport network: A transport network layer based on optical network elements, IEEE/OSA Journal of Lightwave Technology Vol. 11 No. 5/6 (1993) pp. 667–679.CrossRefGoogle Scholar
  6. [6]
    R.E. Wagner, R.C. Alferness, A.A.M. Saleh and M. S. Goodman, MONET: Multiwavelength optical networking, IEEE/OSA Journal of Lightwave Technology Vol. 14 No. 6 (1996) pp. 1349–1355.CrossRefGoogle Scholar
  7. [7]
    M. Sharma, H. Ibe and T. Ozeki, WDM ring network using a centralized multiwavelength light source and add-drop multiplexing fibers, IEEE/05A Journal of Lightwave Technology Vol. 15 No. 6 (1997) pp. 917–929.CrossRefGoogle Scholar
  8. [8]
    J.K. Conlisk, Topology and survivability of future transport networks, In Proc. IEEE Globecom., pp. 826–834, Dallas, TX, November 1989.Google Scholar
  9. [9]
    S. Wagner and T.E. Chapuran, Multiwavelength ring networks for switch consolidation and interconnection, In Proc. IEEE Intl Conf. Commun., pp. 1173–1179, Chicago, IL, June 1992.Google Scholar
  10. [10]
    F. Arecco, F. Casella, E. Iannone, A. Mariconda, S. Merli, F. Pozzi and F. Veghini, A transparent, all-optical, metropolitan network experiment in a field environment: The “PROMETHEO” self-healing ring, IEEE/OSA Journal of Lightwave Technology Vol. 15 No. 12 (1997) pp. 2206–2213.CrossRefGoogle Scholar
  11. [11]
    B. Glance, C.R. Doerr, I.P. KaMinow and R. Montagne, Optically restorable WDM ring network using simple add/drop circuitry, IEEE/OSA Journal of Lightwave Technology Vol. 14 No. 11 (1996) pp. 2453–2456.CrossRefGoogle Scholar
  12. [12]
    P.A. Perrier, S. Ruggeri, A. Noury, P. Gavignet, S. Gauchard, V. Havard, L. Berthelon, H. Fevrier and J. Dupraz, 4-channel, 10-Gbit/s capacity, self-healing WDM ring network with wavelength add/drop multiplexers, In Proc. IEEE/OSA Optical Fiber Commun. Conf., San Jose, CA, February 1996.Google Scholar
  13. [13]
    K. Bala, Multiwavelength optical network architecture, In 7th Worshop on Very High Speed Networks Maryland, July 1996.Google Scholar
  14. [14]
    A.F. Elrefaie, Multiwavelength survivable ring network architectures, In Proc. IEEE Int’l Conf. Commun., pp. 1245–1251, Geneva, Switzerland, May 1993.Google Scholar
  15. [15]
    T-H. Wu and R.C. Lau, A class of self-healing ring architectures for SONET network applications, In Proc. IEEE Globecom., pp. 444–451, San Diego, CA, December 1990.Google Scholar
  16. [16]
    K. Bala, T.E. Stern and K. Bala, Algorithms for routing in a linear lightwave network, In Proc. IEEE Infocom., pp. 1–9, Bal Harbor, FL, April 1991.Google Scholar
  17. [17]
    S. Baroni and P. Bayvel, Wavelength requirements in arbitrary connected wavelength-routed optical networks, IEEE/05A Journal of Lightwave Technology Vol. 15 No. 2 (1997) pp. 242–252.CrossRefGoogle Scholar
  18. [18]
    R.A. Barry and P.A. Humblet, On the number of wavelengths and switches in all-optical networks, IEEE Transactions on Communications Vol. 42 No. 2/3/4 (1994) pp. 583–591.CrossRefGoogle Scholar
  19. [19]
    I. Chlamtac, A. Ganz and G. Karmi, Purely optical networks for Terabit communication, In Proc. IEEE Infocom., pp. 887–896, Ottawa, Canada, April 1989.Google Scholar
  20. [20]
    K.C. Lee and V.O.K. Li, A wavelength convertible optical network, IEEE/OSA Journal of Lightwave Technology Vol. 11 No. 5/6 (1993) pp. 962–970.CrossRefGoogle Scholar
  21. [21]
    B. Mukherjee, WDM-based local lightwave networks - Part I: Single-hop systems, IEEE Network Mag.,Vol. 6 No. 3 (1992) pp. 12–27.CrossRefGoogle Scholar
  22. [22]
    R. Ramaswami and K.N. Sivarajan, Routing and wavelength assignment in all-optical networks, IEEE/ACM Transactions on Networking Vol. 3 No. 5 (1995) pp. 489–500.CrossRefGoogle Scholar
  23. [23]
    G. Ellinas, K. Bala and G.K. Chang, A novel algorithm for wavelength assignment in 4-fiber WDM self-healing rings, In Proc. IEEE Int’l Conf. Commun., Atlanta, GA, June 1998.Google Scholar
  24. [24]
    D. Hunter, Optical mesh routing in four-fibre WDM rings, Electron. Letters Vol. 34 (1998).Google Scholar
  25. [25]
    G. Wilfong, Minimizing wavelengths in an all-optical ring network, In 7 th International Symposium on Algorithms and Computation pp. 346–355, 1996.Google Scholar
  26. [26]
    G. Ellinas, Fault Restoration in optical networks: General methodology and implementation, Ph.D. Thesis, Columbia University, New York, NY, 1998.Google Scholar
  27. [27]
    G. Ellinas, K. Bala and G.K. Chang, Algorithms for wavelength assignment in 2 and 4-fiber self-healing rings, Technical Report TM-25821, Bell Communications Research, Red Bank, NJ, September 1997.Google Scholar
  28. [28]
    T.E. Stern and K. Bala, Multiwavelength Optical Networks, (Addison-Wesley, 1999).Google Scholar
  29. [29]
    G. Ellinas, K. Bala and G.K. Chang, Scalability of a novel wavelength assignment algorithm for WDM shared protection rings, In Proc. IEEE/OSA Optical Fiber CommUn. Conf., pp. 363–364, San Jose, CA, February 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Tellium Inc.OceanportUSA

Personalised recommendations