Density Estimates and Further Properties of Blake Zisserman Functional

  • Michele Carriero
  • Antonio Leaci
  • Franco Tomarelli
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 55)

Abstract

We prove some properties of strong minimizers for functionals depending on free discontinuities, free gradient discontinuities and second derivatives, which are related to image segmentation.

Keywords

Radon Brioschi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    L. Ambroslo: Existence theory for a new class of variational problems, Arch. Rational Mech. Anal., 111 (1990), 291–322MathSciNetCrossRefGoogle Scholar
  2. [AT]
    L. Ambrosio & V. M. Tortorelli: Approximation of functionals depending on jumps by elliptic functionals via T-convergence, Comm. Pure Appl. Math., 43 (1990), 999–1036.MathSciNetMATHGoogle Scholar
  3. [BZ]
    A. Blake & A. Zisserman: Visual Reconstruction, The MIT Press, Cambridge, 1987.Google Scholar
  4. [CL]
    M. Carriero & A. Leaci: S k -valued maps minimizing the LP norm of the gradient with free discontinuities, Ann. Sc. Norm. Sup. Pisa, (4) 18 (1991), 321–352.MathSciNetMATHGoogle Scholar
  5. [CLT1]
    M. Carriero, A. Leaci & F. Tomarelli: Special Bounded Hessian and elastic-plastic plate, Rend. Accad. Naz. delle Scienze (dei XL), (109) XV (1992), 223–258.MathSciNetGoogle Scholar
  6. [CLT2]
    M. Carriero, A. Leaci & F. Tomarelli: Free gradient dis-continuities, in “Calculus of Variations, Homogeneization and Continuum Mechanics”, Buttazzo, Bouchitté, Suquet Eds, World Scientific, Singapore, 1994,131–147.Google Scholar
  7. [CLT3]
    M. Carriero, A. Leaci & F. Tomarelli: A second order model in image segmentation: Blake Zisserman functional, in Vari-ational Methods for Discontinuous Structures, R. Serapioni, F. Tomarelli Eds., Birkauser, 1996,57–72.Google Scholar
  8. [CLT4]
    M. Carriero, A. Leaci & F. Tomtarelli: Strong minimizers of Blake Zisserman functional, Ann. Sc. Norm. Sup. Pisa, (4) 25 (1997), 257–285.MATHGoogle Scholar
  9. [DGA]
    E. De Giorgi & L. Ambrosio: Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 199–210.MathSciNetMATHGoogle Scholar
  10. [DGCL]
    E. De Gioroi, M. Carriero & A. Leaci: Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal., 108 (1989), 195–218.MathSciNetCrossRefGoogle Scholar
  11. [F]
    H. Federer: Geometric Measure Theory, Springer, Berlin, 1969.MATHGoogle Scholar
  12. [L]
    A. Leaci: Free discontinuity problems with unbounded data: the two dimensional case, manuscripta math., 75 (1992), 429–441.MathSciNetMATHCrossRefGoogle Scholar
  13. [MS]
    D. Mumford & J. Shah: Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., XLII (1989), 577–685.MathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Michele Carriero
    • 1
  • Antonio Leaci
    • 1
  • Franco Tomarelli
    • 2
  1. 1.Dipartimento di Matematica “ Ennio De Giorgi”Via ArnesanoLecceItalia
  2. 2.Dipartimento di Matematica “ Francesco Brioschi”PolitecnicoMilanoItalia

Personalised recommendations