Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 55))

Abstract

In order for a factory to carry out its production there must be some capital goods functioning in the best possible conditions so as to guarantee the quality of its products and their delivery timing, etc. Reliability is the technique used to study the availability of the different resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aven, T. “Reliability evaluation of multistate systems with multistate components”. IEEE Transactions on Reliability,1985; R-34:473–479.

    Article  Google Scholar 

  • Baldwin, J.D.; Thacker, J.G. “A strain-based fatigue reliability analysis method”. Journal of Mechanical Design. Transactions of the ASME, 1995; 117:229–234.

    Article  Google Scholar 

  • Barlow, R.E. “Mathematical theory of reliability: a historical perspective”. IEEE Transactions on Reliability, 1984; R-33:16–20.

    Article  Google Scholar 

  • Barlow, R.E.; Proschan, F. Mathematical Theory of Reliability. Philadelphia: SIAM (Society for Industrial and Applied Mathematics), 1996.

    Google Scholar 

  • Bastani, F.B. “On the uncertainty in the correctness of computer programs”. IEEE Transactions on Software Engineering,1985; SE-11:857–864.

    Article  Google Scholar 

  • Bastani, F.B.; Ramamoorthy, C.V. “Software reliability”, in Krishnaiah, P.R.; Rao, C.R. (Eds.) Handbook of Statistics, Vol. 7, Quality Control and Reliability. Amsterdam: Elsevier Science Publishers, 7–25, 1988.

    Google Scholar 

  • Bâzu, M. “A combined fuzzy-logic & physics-of-failure approach to reliability prediction”. IEEE Transactions on Reliability,1995; 44:237–242.

    Article  Google Scholar 

  • Besterfield, D.H. Control de Calidad. Mexico D.F.: Prentice-Hall Hispanoamericana, 1995.

    Google Scholar 

  • Billinton, R.; Allan, R.N. Reliability evaluation of engineering systems - concepts and techniques, 2a ed. New York: Plenum Press, 1992.

    Google Scholar 

  • Bodsberg, L.; Hokstad, P. “A system approach to reliability and life-cycle cost of process safety systems”. IEEE Transactions on Reliability, 1995; 44:179–186.

    Article  Google Scholar 

  • Bogarin, J.A.; Favilla, N.F. “Fault-tree analysis: a knowledge-engineering approach”. IEEE Transactions on Reliability,1995; 44 (1):37–45.

    Article  Google Scholar 

  • Bowles, J.B.; Peláez, C.E. “Applications of fuzzy logic to reliability engineering”. Proceedings of the IEEE, 1995; 83:435–449.

    Article  Google Scholar 

  • Caballero, R.J.; Lyons, R.K. “Internal versus external economies in european industry”. European Economic Review, 1990; 34:805–830.

    Article  Google Scholar 

  • Cai, K.-Y. “Fuzzy reliability theories”. Fuzzy Sets and Systems, 1991; 40:510–511.

    Article  Google Scholar 

  • Cai, K.-Y. “System failure engineering and fuzzy methodology. An introductory overview”. Fuzzy Sets and Systems, 1996; 83:113–133.

    Article  Google Scholar 

  • Cai, K.-Y.; Wen, C.-Y.; Zhang, M.L. “Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context”. Fuzzy Sets and Systems,1991; 42:145–172.

    Article  Google Scholar 

  • Cai, K.-Y.; Wen, C.-Y.; Zhang, M.L. “Coherent sytems in profust reliability theory”, in Onisavva, T.; Kacprzyk, J. (Eds.) Reliability and Safety Analyses under Fuzziness. Berlin: Springer-Verlag, 81–94, 1995.

    Google Scholar 

  • Cayrac, D.; Dubois, D.; Prade, H. “Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application”. IEEE Transactions on Fuzzy Systems,1996; 3:251–269.

    Article  Google Scholar 

  • Chen, S.-M. “Fuzzy system reliability analysis using fuzzy number arithmetic ope-rations”. Fuzzy Sets and Systems,1994; 64:31–38.

    Article  Google Scholar 

  • Cheng, C.-H.; Mon, D.-L. “Fuzzy system reliability analysis by interval of confi-dence”. Fuzzy Sets and Systems,1993; 56:29–35.

    Article  Google Scholar 

  • Chicarro, M.F. Aplicaciones de la Investigación Operativa a la Gestión de Materiales. Madrid: Ministerio de Defensa, 1989.

    Google Scholar 

  • Chin, H.; Danai, K.; Lewicki, D.G. “Fault detection of helicopter gearboxes using the multi-valued influence matrix method”. Journal of Mechanical Design. Transactions of the ASME, 1995; 117:248–253.

    Article  Google Scholar 

  • Cutello, V.; Montero, J.; Yátlez, J. “Structure functions with fiazy states”. Fuzzy Sets and Systems,1996; 83:189–202.

    Article  Google Scholar 

  • Dombi, J. “A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators”. Fuzzy Sets and Systems,1982; 8:149–163.

    Article  Google Scholar 

  • Dubois, D.; Prade, H. Fuzzy Sets and Systems - Theory and Applications. New York: Academic Press, 1980.

    Google Scholar 

  • Ebert, C. “Rule-based fuzzy classification for software quality control”. Fuzzy Sets and Systems,1993; 63:349–358.

    Article  Google Scholar 

  • Evans, R.A. “CBIA”. IEEE Transactions on Reliability,1992a; 41:1.

    Google Scholar 

  • Evans, R.A. “Genuine imitation statiscian”. IEEE Transactions on Reliability, 1992b; 41:165.

    Google Scholar 

  • French, S. “Uncertainty and imprecision: modelling and analysis”. Journal of the Operational Research Society, 1995; 46:70–79.

    Google Scholar 

  • Gupta, S.D.; Al-Musawi, M.J. “Reliability optimization in cable system design using a fuzzy uniform-cost algorithm”. IEEE Transactions on Reliability, 1988; 37:75–80.

    Article  Google Scholar 

  • Hagen, E.; Mays, G. “Human factors engineering in the U.S. nuclear arena”. Nuclear Safety,1981; 22(3): 337–346.

    Google Scholar 

  • Henkind, S.J.; Harrison, M.C. “An analysis of four uncertainty calculi”. IEEE Transactions on Systems, Man and Cybernetics,1988; 18:700–714.

    Article  Google Scholar 

  • Hennings, W.; Kuznetsov, N. “FAMOCUTN & CUTQN: Programs for fast analysis of large fault-trees with replicated & negated gates”. IEEE Transactions on Reliability, 1995; 44(3):368–376.

    Article  Google Scholar 

  • Herrera, F.; Verdegay, J.L. “Fuzzy sets and operations research. Perspectives”. Technical Report #DECSAI-95137, Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, 1995.

    Google Scholar 

  • Ishikawa, K. What is Total Quality Control? The Japanese Way. Englewood Cliffs: Prentice-Hall, 1985.

    Google Scholar 

  • Johnson, R.A. “Stress-strength models for reliability”, in Krishnaiah, P.R.; Rao, C.R. (Eds.) Handbook of Statistics, Vol. 7, Quality Control and Reliability. Amsterdam: Elsevier Science Publishers, 27–54, 1988.

    Google Scholar 

  • Kanagawa, A.; Ohta, H. “Fuzzy design for fixed-number life tests”. IEEE Transactions on Reliability, 1990; 39:394–398.

    Article  Google Scholar 

  • Kanagawa, A.; Ohta, H. “Fixed-time life tests based on fuzzy life characteristics”. IEEE Transactions on Reliability, 1992; 41:317–320.

    Article  Google Scholar 

  • Karwowski, W.; Mital, A. “Potential applications of fuzzy sets in industrial safety engineering”. Fuzzy Sets and Systems, 1986; 19:105–120.

    Article  Google Scholar 

  • Kaufmann, A. Introduction to the Theory of Fuzzy Subsets - Volume I. New York: Academic Press, 1975.

    Google Scholar 

  • Kaufmann, A. “Les mathématiques de l’imprécis. La théorie des sous-ensembles flous et ses possibilities dans les modèles des sciences humaines”. Travaux du Centre d Études Valéryennes, 1979; 3:27–37.

    Google Scholar 

  • Kaufmann, A. “On the relevance of fuzzy sets for operations research”. European Journal of Operational Research,1986; 25:330–335.

    Article  Google Scholar 

  • Kaufmann, A.; Gil Aluja, J. Introducción de la Teoria de los Subconjuntos Borrosos a la Gestión de las Empresas. Santiago de Compostela: Milladoiro, 1986.

    Google Scholar 

  • Kaufmann, A.; Gil Aluja, J. Técnicas de Gestión de Empresa. Previsiones Decisiones y Estrategias. Madrid: Pirámide, 1992.

    Google Scholar 

  • Kaufmann, A.; Grouchko, D.; Cruon, R. Modèles Mathématiques pour Ittude de la Fiabiltté des Systèmes. Paris: Masson et Cie, 1975.

    Google Scholar 

  • Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic: Theoty and Applications. New York: Van Nostrand Reinhold, 1985.

    Google Scholar 

  • Kawamura, H.; Kuwamoto, Y. “Combined probability-possibillity evaluation theory for structural reliability”, in Onisawa, T.; Kacprzyk, J. (Eds.) Reliability and Safety Analyses under Fuzziness. Berlin: Springer-Verlag, з41-з57, 1995.

    Google Scholar 

  • Kenarangui, R. “Event-tree analysis by fuzzy probability”. IEEE Transactions on Reliability,1991; 40(1):120–124.

    Article  Google Scholar 

  • Kim, C.E.; Ju, Y.J.; Gens, M. “Multilevel fault tree analysis using fuzzy numbers”. Computers Operations Research,1996; 23(7):695–703.

    Article  Google Scholar 

  • Landry, M.; Banville, C.; Oral, M. “Model legitimisation in operational research”. European Journal of Operational Research,1996; 42:443–457.

    Article  Google Scholar 

  • Lee, J.H.; Kim, W.Y.; Kim, M.H.; Lee, Y.J. “The effectiveness of fuzzy operators in information retrieval”, in Bien, Z.; Min, K.С. (Eds.). Fuzzy Logic and its applica-tions to engineering, information sciences, and intelligent systems. Dordrecht: Kluwer Academic Press, 397–405, 1995.

    Google Scholar 

  • Liang, G.-S.; Wang, M.-J. “A fuzzy multicriteria decision-making method for facility site selection”. International Journal of Production Research, 1991; 29(11):2313–2330.

    Article  Google Scholar 

  • Litwin, M.S. How to Measure Survey Reliability and Validity. Thousand Oaks: SAGE Publications, 1995.

    Google Scholar 

  • Lyu, M.R. Handbook of Software Reliability Engineering. New York: IEEE Computer Society Press, 1995.

    Google Scholar 

  • Mann, N.R.; Schafer, R.E.; Singpurwalla, N.D. Methods for Statistical Analysis of Reliability and Life Data. New York: John Wiley & Sons 1974.

    Google Scholar 

  • Mazumdar, M. “Approximate computation of power generating system reliability indexes”, in Krishnaiah, P.R.; Rao, C.R. (Eds.) Handbook ofStatistics, Vol. 7, Quality Control and Reliability, Amsterdam: Elsevier Science Publishers, 55–72, 1988.

    Google Scholar 

  • Mazzuchi, T.A.; Singpurwalla, N.D. “Software reliability models”, in Krishnaiah, P.R.; Rao, C.R. (Eds.) Handbook ofStatistics, Vol. 7, Quality Control and Reliability, Amsterdam: Elsevier Science Publishers, 73–98, 1988.

    Google Scholar 

  • McCauley-Bell, P.; Badiru, A.B. “Fuzzy modeling and analytic hierarchy processing to quantify risk levels associated with occupational injuries - Part I: the development of fuzzy-linguistic risk levels & Part II: the development of fuzzy rule-based model for the prediction of injury”.IEEE Transactions on Fuzzy Systems, 1996; 4:124–131 & 132–138.

    Google Scholar 

  • Meister, D. Human Factors: Theory and Practice, Series in Human Factors. Chichester: Jhon Wiley & Sons, 1971.

    Google Scholar 

  • Misra, K.B.; Weber, G.G. “Use of fuzzy set theory for level-I studies in probabilistic risk assessment”. Fuzzy Sets and Systems, 1990 37:139–160.

    Article  Google Scholar 

  • Mizumoto, M. “Pictorial representations of fuzzy connectives, part I: cases of t-norms, t-conorms and averaging operators”. Fuzzy Sets and Systems, 1989; 31:217–242.

    Article  Google Scholar 

  • Mon, D.-L.; Cheng, C.-H. “Fuzzy system Leliability analysis using fuzzy number arithmetic operations”. Fuzzy Sets and Systems, 1994; 64:31–38.

    Article  Google Scholar 

  • Montmollin, M. Introducción a la Ergonomia. México: Limusa, 1999.

    Google Scholar 

  • Nahmias, S. “Fuzzy variable”. Fuzzy Sets and Systems, 1978; 1:97–110.

    Article  Google Scholar 

  • Nenkova B.; Manchev, B. “Fault tree analysis of risk objects technical systems”. Proceedings of the International Conference on Intelligent Technologies in Human-related Sciences,León, 1996; 1:301–305.

    Google Scholar 

  • Neubauer, F.-FGestión de Carteras. El Concepto de Beneficio Potencial y su Aplicación. Madrid: McGraw-Hill, 1993.

    Google Scholar 

  • Nicolet, J.L. “Sistemas complejos y fiabilidad humana”, in Tratado de la Calidad Total. Labouchex V. (Director). Madrid: Ciencias de la Dirección, 317–331, 1992.

    Google Scholar 

  • Onisawa, T. “An approach to human reliability in man-machine system using error possibility”. Fuzzy Sets and Systems, 1988; 27:87–103.

    Article  Google Scholar 

  • Onisawa, T. “Fuzzy theory in reliability analysis”. Fuzzy Sets and Systems, 1989; 29:250–251.

    Google Scholar 

  • Onisawa, T. “An application of fuzzy concepts to modelling of reliability analysis”. Fuzzy Sets and Systems, 1990; 37, 267–283.

    Article  Google Scholar 

  • Onisawa, T. “Subjective system realibility analysis and agreement of its results”, en Bien, Z.y, K.C. Min (Eds.). Fuzzy Logic and its applications to engineering, information sciences, and intelligent systems. Dordrecht: Kluwer Academic Press, 265–274, 1995.

    Google Scholar 

  • Onisawa, T.; Nishiwaki, Y. “Fuzzy human reliability analysis on the Chernobyl acci-dent”. Fuzzy Sets and Systems,1988; 28:115–127.

    Article  Google Scholar 

  • Onisawa, T.; Sugeno, M.; Nishiwaki, Y.; Kawai, H.; Harima, Y. “Fuzzy measure analysis of public towards th - use of nuclear energy”. Fuzzy Sets and Systems,1986; 20:259–289.

    Article  Google Scholar 

  • Paasch, R.K.; Ruff, D.N. “Evaluation of failure diagnosis in conceptual design of mechanical systems”. Journal of mechanical Design. Transactions of the ASME,1997; 119:57–64.

    Article  Google Scholar 

  • Page, L.B.; Perry, J.E. “Standard deviation as an alternative to fuzziness in fauft tree models”. IEEE Transactions on Reliability, 1994; 43(3):402–407.

    Article  Google Scholar 

  • Pagès A.; Gondran, M. Fiabilité des Systèmes. Paris: EyrolleS, 1980.

    Google Scholar 

  • Pal, N.R.; Bezdek, J.C. “On cluster validity for the fuzzy c-means model”. IEEE Transactions on Fuzzy Systems, 1995; 3:370–379.

    Article  Google Scholar 

  • Park, K.S. “Fuzzy apportionment of system reliability”. IEEE Transactions on Reliability,1987; R-36:129–132.

    Article  Google Scholar 

  • Pau, L.F. “Applications of pattern recognition in failure diagnosis and quality con-trol”, in Krishnaiah, P.R.; Rao, C.R. (Eds.) Handbook of Statistics, Vol. 7, Quality Control and Reliability, Amsterdam: Elsevier Science Publishers, 281–311, 1988.

    Google Scholar 

  • Pedrycz, W. Fuzzy Systems and Fuzzy Control. Somerset: Research Studies Press, 1993

    Google Scholar 

  • Pham, H. Software Reliability and Testing. Washington: IEEE Computer Society Press, 1995.

    Google Scholar 

  • Polovko, A.M.,Fundamentals of Reliability Theog. New York: Academic Press, 1968.

    Google Scholar 

  • Preyssl, C; Nishiwaki, Y. “Risk index and application of fuzzy logic”, in Onisawa, T.; Kacprzyk, J. (Eds.) Reliability and Safety Analyses under Fuzziness. Berlin: Springer-Verlag, 273–284, 1995.

    Google Scholar 

  • Quian, Y.; Tessier, P.J.C.; Dumont, G.A. “Application of fuzzy relational modelling to industrial product quality control”, in Onisawa, T.; Kacprzyk, J. (Eds.) Reliability and Safety Analyses under Fuzziness. Berlin: Springer-Verlag, 203–216, 1995.

    Google Scholar 

  • Roberts, I.D.; Samuel, A.E. “The use of imprecise component reliability distributions in reliability calculations”. IEEE Transactions on Reliability, 1996; 45:141–144.

    Article  Google Scholar 

  • Onisawa, T.; Kacprzyk, J. (Eds.) Reliability and Safety Analyses under Fuzziness. Berlin: Springer-Verlag, 24269-, 1995.

    Google Scholar 

  • Saaty, T.L. The Analytic Hierarchy Process. Planning, Priority Setting, Resource Allocation. New Yirk: McGraw-Hill, 1980.

    Google Scholar 

  • Salvendy, G. Handbock of Human Factors and Ergonomics. New York: John Wiley & Sons, 1997.

    Google Scholar 

  • Shooman, M.L. “Software reliability: a historical perspective”. IEEE Transactions on Reliability,1984; 33:84–55.

    Google Scholar 

  • Silvert, W. “Symmetric summation: a class of operations on fuzzy sets ”. IEEE Transactions on Systems, Man and Cybernetics, 1979, SMC-9(10):657–659.

    Google Scholar 

  • Singer, D. “A fuzzy set approach to fault tree and reliability analysis”. Fuzzy Sets and Systems,1990; 34:145–155.

    Article  Google Scholar 

  • Sugeno, M. “Fuzzy measures and fuzzy integrals”. Summary of Papers on General Fuzzy Problems. The Working Group on Fuzzy Systems, 1975; 1:55–60.

    Google Scholar 

  • Suresh, P.V.; Babar, A.K.; Venkat Raj, V. “Uncertainty in fault tree analysis: a fuzzy approach”. Fuzzy Sets and Systems, 1996; 83:135–141.

    Article  Google Scholar 

  • Suresh, P.V.; Cahudhuri, D.; Rao, B.V.A. “Fuzzy-set approach to select maintenance strategies for multistate equipment”. IEEE Transactions on Reliability, 1994; 43:451–456.

    Article  Google Scholar 

  • Tanaka, H.; Fan, L.T.; Lai, F.S.; Toguchi, K. “Fault-tree analysis by fuzzy probability”.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gento, A.M., Redondo, A. (2001). Reliability of production systems. In: Gil-Aluja, J. (eds) Handbook of Management under Uncertainty. Applied Optimization, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0285-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0285-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7978-2

  • Online ISBN: 978-1-4613-0285-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics