Advertisement

Generalized Elliptic Cubic Curves, Part 1

  • Francis Buekenhout
Part of the Developments in Mathematics book series (DEVM, volume 3)

Abstract

We define the concept of Generalized Elliptic Cubic Curve (GECC) which is not necessarily embedded in a projective plane and which appears as an Incidence Geometry. We develop foundations and raise several problems. All GECCs with up to 8 points are classified.

Keywords

Inflexion Point Projective Plane Finite Field Elliptic Curf Triple System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Bénéteau, Cubic hypersurface quasigroups, Quasigroups and Loops: Theory and Applications,Heldermann Verlag, Berlin, 1990, 143–150.Google Scholar
  2. [2]
    L. Bénéteau, Extended triple systems: geometric motivations and algebraic con-structions, Discrete Math. 208/209 (1999), 31–47.CrossRefGoogle Scholar
  3. [3]
    A. Beutelspazher and U. Rosenbaum, Projective Geometry: from Foundations to Applications, Cambridge University Press, Cambridge, 1998.Google Scholar
  4. [4]
    R. Bix, Conics and Cubics: a Concrete Introduction to Algebraic Curves, Springer, New York, 1991.Google Scholar
  5. [5]
    R.H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 55 (1944), 19–52.MathSciNetGoogle Scholar
  6. [6]
    R.H. Bruck, A Survey of Binary Systems, Springer, Berlin, 1958.MATHGoogle Scholar
  7. [7]
    F. Buekenhout, Cubiques généralisées, unpublished manuscript, 1962,18 pages.Google Scholar
  8. [8]
    F. Buekenhout, Etude intrinsèque des ovales, Rend. Mat. 25 (1966) 1–61.MathSciNetGoogle Scholar
  9. [9]
    F. Buekenhout, Ensembles quadratiques des espaces projectifs, Math. Z. 110 (1969), 306–318.MathSciNetCrossRefGoogle Scholar
  10. [10]
    F. Buekenhout, Non-singular cubic sets in projective planes, unpublished manuscript, 1987–1990, 14 pages.Google Scholar
  11. [11]
    F. Buekenhout, Handbook of Incidence Geometry. Buildings and Foundations, North Holland-Elsevier, Amsterdam, 1995.Google Scholar
  12. [12]
    M. Cicchese, Sulle cubiche di un piano di Galois, Atti. Accad. Naz. Lincei Rend., 32 (1962), 38–42.MathSciNetGoogle Scholar
  13. [13]
    F. Enriques and O. Chisini, Lezioni sulle Teoria Geometrica delle Equazioni e delle Funzioni Algebriche, Zanichelli, Bologna, 1915.Google Scholar
  14. [14]
    I.M.H. Etherington, Quasigroups and cubic curves, Proc. Edinburgh Math. Soc. 14 (1964), 273–291.MathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Ghinelli, N. Melone and U. Ott, On abelian cubic arcs, Geom. Dedicata 32 (1989), 31–52.MathSciNetCrossRefGoogle Scholar
  16. [16]
    J.W.P. Hirschfeld, Algebraic curves, arcs, and caps over finite fields, Quaderni del Dipart. Matemat. Univ. Lecce, 1986, 49 pages.Google Scholar
  17. [17]
    J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford, 1979 (2nd edition in 1998 ).MATHGoogle Scholar
  18. [18]
    J. W. P. Hirschfeld and J.F. Voloch, The characterization of elliptic curves over finite fields, J. Austral. Math. Soc. Ser. A 45 (1988), 275–286.MathSciNetCrossRefGoogle Scholar
  19. [19]
    J.W.P. Hirschfeld and J.F. Voloch, Group-arcs of prime power order on cubic curves, Finite Geometry and Combinatorics,London Math. Soc. Lecture Note Series 191, 1993, Cambridge University Press, Cambridge, 177–186.Google Scholar
  20. [20]
    J.W.P. Hirschfeld and J.A. Thas, Sets with more than one representation as an algebraic curve of degree three, Finite Geometries and Combinatorial Designs, Contemp. Math. 111, American Mathematical Society, Providence, 1990, 99–110.Google Scholar
  21. [21]
    A.D. Keedwell, Simple constructions for elliptic cubic curves with specified small number of points, European J. Combin. 9 (1988), 463–481.MathSciNetGoogle Scholar
  22. [22]
    A.D. Keedwell, More simple constructions for elliptic cubic curves with small numbers of points, Pure Math. Appt. Ser. A 3 (1992), 199–214.MathSciNetGoogle Scholar
  23. [23]
    Y.I. Manin, Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland, Amsterdam, 1974 (Translation of Russian version, 1970).MATHGoogle Scholar
  24. [24]
    H.O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990.Google Scholar
  25. [25]
    H.-G. Rack, A note on elliptic curves over finite fields, Math. Comput. 49 (1987), 301–304.Google Scholar
  26. [26]
    J. Schwenk, A classification of abelian quasigroups, Rend. Mat. Appl. 15 (1995), 161–172.MathSciNetGoogle Scholar
  27. [27]
    N. Schappacher, Développement de la loi de groupe sur une cubique, Séminaire de Théorie des Nombres, Paris, 1988–89, 159–184.Google Scholar
  28. [28]
    R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), 183–211.MathSciNetCrossRefGoogle Scholar
  29. [29]
    G. Valette, Cubiques topologiques à 1 dimension, Arch. Math. 26 (1965), 265–273.MathSciNetCrossRefGoogle Scholar
  30. [30]
    J.F. Voloch, A note on elliptic curves over finite fields, Bull. Soc. Math. France. 116 (1988), 455–458.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Francis Buekenhout
    • 1
  1. 1.Département de Mathématiques-C.P. 216Université Libre de BruxellesBrusselsBelgium

Personalised recommendations