Discrete Simulation in Nonlinear Dynamics with Applications

  • Donald Greenspan
Part of the Mathematics and Its Applications book series (MAIA, volume 528)

Abstract

Contemporary science teaches us that:
  1. (a)

    All things change with time.

     
  2. (b)

    All material bodies consist of atoms and/or molecules.

     

Keywords

Vortex Dioxide Graphite Soliton Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hirschfelder, J., Curtiss, C., and Bird, R., Molecular Theory of Gases and Liquids, Wiley, New York, 1965.Google Scholar
  2. [2]
    Greenspan, D., Arithmetic Applied Mathematics, Pergamon, Oxford, 1980.MATHGoogle Scholar
  3. [3]
    Greenspan, D. and Heath, L., Supercomputer simulation of the modes of colliding microdrops of water, J. Phys. D, 24, 1991, 2121.CrossRefGoogle Scholar
  4. [4]
    Greenspan, D., Supercomputer simulation of cracks and fractures by quasimolecular dynamics, J. Phys. Chem. Solids, 50, 1989, 1245.CrossRefGoogle Scholar
  5. [5]
    Greenspan, D., Quasimolecular simulation of large liquid drops, J. Phys. D, 22, 1989, 1415.CrossRefGoogle Scholar
  6. [6]
    Greenspan, D., Particle simulation of large carbon dioxide bubbles in water, Appl. Math. Mod., 19, 1995, 738.MATHCrossRefGoogle Scholar
  7. [7]
    Korlie, M., Ph.D. thesis, Mathematics, UT Arlington, 1996.Google Scholar
  8. [8]
    Greenspan, D., Particle modelling of cavity flow on a vector computer, Comp. Meth. Appl. Math. Eng., 66, 1988, 291.MATHCrossRefGoogle Scholar
  9. [9]
    Greenspan, D., Particle simulatio of biological sorting on a supercomputer, Comp. Math. Applic., 18, 1989, 823.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Greenspan, D., Mechanisms of capillarity via supercomputer simulation, Comp. Math. Applic., 16, 1988, 141.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Greenspan, D. and Casulli, V., Particle modelling of an elastic arch, Appl. Math. Mod., 9, 1985, 215.MATHCrossRefGoogle Scholar
  12. [12]
    Greenspan, D., Computer-oriented n-body modeling of minimal surfaces, Appl. Math. Mod., 7, 1983, 423.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Coppin, C. and Greenspan, D., A contribution to the modelling of soap films, Appl. Math. Comp., 26, 1988, 315.MathSciNetMATHGoogle Scholar
  14. [14]
    Greenspan, D., TR 167, Comp. Sci. Dept., UW Madison, 1972.Google Scholar
  15. [15]
    Greenspan, D., Quasimolecular channel and vortex modelling on a supercomputer, Comp. Math. Applic., 15, 1988, 331.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Goldstine, H., Classical Mechanics, 2nd edition, A.-W., Reading, 1980.Google Scholar
  17. [17]
    Greenspan, D., Completely conservative, covariant numerical methodology, Comp. Math. Applic., 29, 1995, 37.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Simo, J. and Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elasodynamics, ZAMP, 43, 1992, 757.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Greenspan, D., Covariant computation in special relativistic dynamics, Physica Scripta, 52, 1995, 353.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Greenspan, D., Electron attraction as a mechanism for the chemical bond of ground state H 2 Physica Scripta, 52, 1995, 267.MathSciNetGoogle Scholar
  21. [21]
    Greenspan, D., A semiclassical, dynamical model of the water molecule, Physica Scripta, 54, 1996, 458.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Donald Greenspan
    • 1
  1. 1.Department of MathematicsThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations