On Some Pseudoelastic Solutions in the Spinoidal Region for the One-Dimensional Martensite Phase Transitions

  • K. A. Lazopoulos
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 50)


For a pseudo-elastic bar model with internal variable, simple non-uniform solutions for the axial extension problem are derived, including the spinoidal region. The variable may represent damage distribution. The theory is implemented to the necking problem of an extended pseudo-elastic bar.


Shape Memory Alloy Internal Variable Strain Energy Density Elastic Strain Energy Density Isotropic Linear Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aifantis, E., and Serrin, J. (1983a). The mechanical theory of fluid interfaces and Maxwell’s rule. Jnl of Colloid and Interface Science, 96 (2): 517–529.CrossRefGoogle Scholar
  2. Aifantis, E., and Serrin, J. (1983b). Equilibrium solutions in the mechanical theory of fluid microstructures. Jnl of Colloid and Interface Science, 96 (2): 530–547.CrossRefGoogle Scholar
  3. Brandon,D., Lin, T., and Rogers, R.C. (1995). Phase transitions and hysteresis in non-local and order parameter models. Meccanica, 30: 541–565.MathSciNetMATHCrossRefGoogle Scholar
  4. Carr,J., Gurtin,M., and Slemrod M. (1984). Structured phase transitions on a finite interval. Archives of Rational Mechanics and Analysis, 86: 317–351.MathSciNetMATHCrossRefGoogle Scholar
  5. Carr,J., Gurtin,M., and Slemrod M. (1985). One dimensional structured phase transformations under prescribed loads. Journal of Elasticity, 15: 133–142.MathSciNetMATHCrossRefGoogle Scholar
  6. Del Piero, G. (1997). One dimensional ductile brittle transition, yielding and structured deformations, In Proc. IUTAM Symposium “Variations de domaines et frontieres libres en mechanique de solides ”, Paris.Google Scholar
  7. Del Piero, G. (1998). Towards a unified approach to fracture, yielding and damage. In Proc. of the 9th International Symposium of Continuum Models and Discrete Systems, Instabul.Google Scholar
  8. Ericksen, J.L. (1991). Equilibrium of bars. Journal of Elasticity, 11: 191–201.Google Scholar
  9. Ericksen,J.L. (1991). Introduction to the thermodynamics of solids. Chapman and Hall, London.MATHGoogle Scholar
  10. Falk, F. (1983). Ginburg-Landau theory of static domain walls in shape memory alloys. Z. Phys. B-Condensed Matter, 51: 177–185.CrossRefGoogle Scholar
  11. Kevorkian, J., and Cole,J. (1981). Perturbation methods in applied mathematics. Springer Verlag, New York.MATHGoogle Scholar
  12. Khachaturyan, A. (1983). The theory of structural transformations in solids. John Wiley and Sons, New York.Google Scholar
  13. Lazopoulos, K.A. (1995). Beam buckling as a coexistence of phases phenomenon. Eur. J.Mech. A/Solids, 14 (4): 589–604.MathSciNetMATHGoogle Scholar
  14. Lazopoulos, K.A. and Ogden, R.W. (1998). Non-linear elasticity theory with discontinuous internal variables. Math. and Mech. of Solids, 3: 29–51.MathSciNetMATHCrossRefGoogle Scholar
  15. Liu, C.T., Kunsmann, H., Otsuka, K., and Wuttig, M. (1992). Shape-memory materials and phenomena-fundamental aspects and applications. Mater. Res. Soc. Symp., 246.Google Scholar
  16. Nadai, A. (1950). Theory of flow and fracture in solids. McGraw-Hill New York etc.Google Scholar
  17. Nayfeh, A. (1973). Perturbation methods. Wiley,New York, etc.MATHGoogle Scholar
  18. Parry, G.P. (1987). On internal variable models of phase transitions. Journal of Elasticity, 17: 63–70.MathSciNetMATHCrossRefGoogle Scholar
  19. Rogers, R.C. (1996). Some remarks on non-local interactions and hysteresis in phase transitions. Cont. Mech. and Therm, 8: 65–73.MATHCrossRefGoogle Scholar
  20. Rogers, R.C., and Truskinovski, L. (1997). Discretization and hysteresis. Physica B, 233: 370–375.CrossRefGoogle Scholar
  21. Salje, E.K.H. (1993). Phase transitions in ferroelastic and coelastic crystals. Cambridge Univ.Press.Google Scholar
  22. Truskinovski, L., and Zanzotto, G. (1996). Ericksen’s bar revisited: energy wiggles. Jnl. Mech. Phys. Solids, 44 (8): 1371–1408.CrossRefGoogle Scholar
  23. Vainchtein, A., Healy, T., Rosakis, P., and Truskinovski, L. (1998). The role of the spinoidal region in one-dimensional martensitic phase transitions. Physica D, 115: 29–48.MathSciNetMATHCrossRefGoogle Scholar
  24. Washizu, K. (1975). Variational methods in elasticity and plasticity. 2nd ed., Pergamon Press, Oxford, New York, etc.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • K. A. Lazopoulos
    • 1
  1. 1.Mechanics LaboratoryNational Technical University of AthensGreece

Personalised recommendations