The Navier-Stokes Equations over Unbounded Domains

  • U. U. Kähler
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 8)

Abstract

In this paper we apply an operator calculus over unbounded domains, whose complement contains a non-empty open set, to solve the linear Stokes problem in scales of W q k (Ω)-spaces over this kind of unbounded domains. This result will be used to investigate the Navier-Stokes equations for steady flows by means of a Banach contraction principle.

Keywords

Convection Stein Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agmon, S., Douglis, A., and L. Nirenberg, ‘Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions’ I, Comm. Pure Appl. Math., 12, 623–727 (1959).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bernstein, S., Analytische Untersuchungen in unbeschränkten Gebieten mit Anwendungen auf quaternionische Operatortheorie und elliptische Randwertprobleme, Dissertation, BA Freiberg, 1993.Google Scholar
  3. [3]
    Borchers, W. and Miyakawa, T., ‘On stability of exterior stationary Navier-Stokes flows’, Acta Math., 174, 311–382 (1995).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Brackx, F., Delanghe, R., and Sommen, F., Clifford Analysis, Research Notes in Mathematics No. 76, Pitman, London, 1982.Google Scholar
  5. [5]
    Cerejeiras, P. and Kähler, U., ‘Elliptic boundary value problems of fluid dynamics over unbounded domains’, Math. Meth. Appl. Sci., to appear.Google Scholar
  6. [6]
    Cattabriga, L., ‘Su un problema al contorno relativo al sistema di equazioni di Stokes’, Sem. Mat. Univ. Padova, 31, 308–340 (1964).MathSciNetGoogle Scholar
  7. [7]
    Fabes, E., Mendez, O., and Mitrea, M., ‘Boundary Layers on Sobolev-Besov Spaces and Poisson’s Equation for the Laplacian in Lipschitz Domains’, J. Funct. Anal., 159, 323–368 (1998).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Finn, R., ’ On the exterior stationary problem for the Navier-Stokes equations and associated pertubation problems’, Arch. Rat. Mech. Anal., 19, 363–406 (1965).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Galdi, G.P., An Introduction to the mathematical theory of the Navier-Stokes equations, Springer, New York, 1994.Google Scholar
  10. [10]
    Galdi, G.P. and Simader, C.G., ‘Existence, Uniqueness and Lq-Estimates for the Stokes-Problem in an Exterior Domain’, Arch. Rat. Mech. Anal., 112, 291–318 (1990).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Gilbert, J.E. and Murray, M.A.M., Clifford algebras and Dirac operators in harmonic analysis, Cambr. Studies in Adv. Math. 26, Cambridge Univ. Press, Cambridge, 1990.Google Scholar
  12. [12]
    Gürlebeck, K., Kähler, U., Ryan, J., and Sprößig, W., ‘Clifford Analysis over unbounded domains’, Adv. in Appl. Math., 19, 216–239 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Gürlebeck, K. and Sprößig, W., Quaternionic analysis and elliptic boundary value problems, Birkhäuser, Basel, 1990.MATHGoogle Scholar
  14. [14]
    Gürlebeck, K. and Sprößig, W., Quaternionic and Clifford calculus for Engineers and Physicists, John Wiley &. Sons, Chichester, 1997.MATHGoogle Scholar
  15. [15]
    Jerison, D. and Kenig, C., ‘The inhomogeneous Dirichlet problem in Lipschitz domains’, J. Funct. Anals., 130, 161–219 (1995).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Kähler, U., ‘Elliptic boundary value problems in bounded and unbounded domains’, in Dirac operators in analysis, ed. by J. Ryan and D. Struppa, Pitman Research Notes in Mathematics 394, Pitman-Longman, 122–144 (1998).Google Scholar
  17. [17]
    Kähler, U., ‘On a direct decomposition of the space Lp(Ω)’, ZAA, 18(4), 839–848 (1999).MATHGoogle Scholar
  18. [18]
    Kähler, U., ‘Clifford Analysis and the Navier-Stokes equations over unbounded domains’, Advances in Applied Clifford Algebras, to appear.Google Scholar
  19. [19]
    Kozono, H. and Sohr, H., ‘On a New Class of Generalized Solutions of the Stokes Equations in Exterior Domains’, Ann. Scuola Norm. Sup. Pisa, 19, 155–181 (1992).MathSciNetMATHGoogle Scholar
  20. [20]
    Kozono, H. and Sohr, H., ‘New A-priori-Estimates for the Stokes Equations in Exterior Domains’, Indiana Univ. Math. J., 40, 1–27 (1991).MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Leray, J., ‘Sur le mouvement d’une liquide visqueux remplissant l’espace’, Acta Math., 63, 193–248 (1934).MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Novotny, A. and Padula, M., ‘Note on decay of solutions of steady Navier-Stokes equations in 3-D exterior domains’, Differential and Integral Equations, 8, No. 7, 1833–1842 (1995).MathSciNetMATHGoogle Scholar
  23. [23]
    Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, Princeton University Press, Princeton, 1990.Google Scholar
  24. [24]
    Tarkhanov, N.N., The Cauchy problem for Solutions of Elliptic equations, Akademieverlag, Berlin, 1995.MATHGoogle Scholar
  25. [25]
    Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, 1995.MATHGoogle Scholar
  26. [26]
    Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.Google Scholar
  27. [27]
    Varnhorn, W., The Stokes Equations, Akademie-Verlag, Berlin, 1994.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • U. U. Kähler
    • 1
  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal

Personalised recommendations