The Navier-Stokes Equations over Unbounded Domains

  • U. U. Kähler
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 8)


In this paper we apply an operator calculus over unbounded domains, whose complement contains a non-empty open set, to solve the linear Stokes problem in scales of W q k (Ω)-spaces over this kind of unbounded domains. This result will be used to investigate the Navier-Stokes equations for steady flows by means of a Banach contraction principle.


Convection Stein Univer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agmon, S., Douglis, A., and L. Nirenberg, ‘Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions’ I, Comm. Pure Appl. Math., 12, 623–727 (1959).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bernstein, S., Analytische Untersuchungen in unbeschränkten Gebieten mit Anwendungen auf quaternionische Operatortheorie und elliptische Randwertprobleme, Dissertation, BA Freiberg, 1993.Google Scholar
  3. [3]
    Borchers, W. and Miyakawa, T., ‘On stability of exterior stationary Navier-Stokes flows’, Acta Math., 174, 311–382 (1995).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Brackx, F., Delanghe, R., and Sommen, F., Clifford Analysis, Research Notes in Mathematics No. 76, Pitman, London, 1982.Google Scholar
  5. [5]
    Cerejeiras, P. and Kähler, U., ‘Elliptic boundary value problems of fluid dynamics over unbounded domains’, Math. Meth. Appl. Sci., to appear.Google Scholar
  6. [6]
    Cattabriga, L., ‘Su un problema al contorno relativo al sistema di equazioni di Stokes’, Sem. Mat. Univ. Padova, 31, 308–340 (1964).MathSciNetGoogle Scholar
  7. [7]
    Fabes, E., Mendez, O., and Mitrea, M., ‘Boundary Layers on Sobolev-Besov Spaces and Poisson’s Equation for the Laplacian in Lipschitz Domains’, J. Funct. Anal., 159, 323–368 (1998).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Finn, R., ’ On the exterior stationary problem for the Navier-Stokes equations and associated pertubation problems’, Arch. Rat. Mech. Anal., 19, 363–406 (1965).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Galdi, G.P., An Introduction to the mathematical theory of the Navier-Stokes equations, Springer, New York, 1994.Google Scholar
  10. [10]
    Galdi, G.P. and Simader, C.G., ‘Existence, Uniqueness and Lq-Estimates for the Stokes-Problem in an Exterior Domain’, Arch. Rat. Mech. Anal., 112, 291–318 (1990).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Gilbert, J.E. and Murray, M.A.M., Clifford algebras and Dirac operators in harmonic analysis, Cambr. Studies in Adv. Math. 26, Cambridge Univ. Press, Cambridge, 1990.Google Scholar
  12. [12]
    Gürlebeck, K., Kähler, U., Ryan, J., and Sprößig, W., ‘Clifford Analysis over unbounded domains’, Adv. in Appl. Math., 19, 216–239 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Gürlebeck, K. and Sprößig, W., Quaternionic analysis and elliptic boundary value problems, Birkhäuser, Basel, 1990.MATHGoogle Scholar
  14. [14]
    Gürlebeck, K. and Sprößig, W., Quaternionic and Clifford calculus for Engineers and Physicists, John Wiley &. Sons, Chichester, 1997.MATHGoogle Scholar
  15. [15]
    Jerison, D. and Kenig, C., ‘The inhomogeneous Dirichlet problem in Lipschitz domains’, J. Funct. Anals., 130, 161–219 (1995).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Kähler, U., ‘Elliptic boundary value problems in bounded and unbounded domains’, in Dirac operators in analysis, ed. by J. Ryan and D. Struppa, Pitman Research Notes in Mathematics 394, Pitman-Longman, 122–144 (1998).Google Scholar
  17. [17]
    Kähler, U., ‘On a direct decomposition of the space Lp(Ω)’, ZAA, 18(4), 839–848 (1999).MATHGoogle Scholar
  18. [18]
    Kähler, U., ‘Clifford Analysis and the Navier-Stokes equations over unbounded domains’, Advances in Applied Clifford Algebras, to appear.Google Scholar
  19. [19]
    Kozono, H. and Sohr, H., ‘On a New Class of Generalized Solutions of the Stokes Equations in Exterior Domains’, Ann. Scuola Norm. Sup. Pisa, 19, 155–181 (1992).MathSciNetMATHGoogle Scholar
  20. [20]
    Kozono, H. and Sohr, H., ‘New A-priori-Estimates for the Stokes Equations in Exterior Domains’, Indiana Univ. Math. J., 40, 1–27 (1991).MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Leray, J., ‘Sur le mouvement d’une liquide visqueux remplissant l’espace’, Acta Math., 63, 193–248 (1934).MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Novotny, A. and Padula, M., ‘Note on decay of solutions of steady Navier-Stokes equations in 3-D exterior domains’, Differential and Integral Equations, 8, No. 7, 1833–1842 (1995).MathSciNetMATHGoogle Scholar
  23. [23]
    Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, Princeton University Press, Princeton, 1990.Google Scholar
  24. [24]
    Tarkhanov, N.N., The Cauchy problem for Solutions of Elliptic equations, Akademieverlag, Berlin, 1995.MATHGoogle Scholar
  25. [25]
    Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, 1995.MATHGoogle Scholar
  26. [26]
    Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.Google Scholar
  27. [27]
    Varnhorn, W., The Stokes Equations, Akademie-Verlag, Berlin, 1994.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • U. U. Kähler
    • 1
  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal

Personalised recommendations