A Characterization of Analytic Functionals on the Sphere II

  • Mitsuo Morimoto
  • Masanori Suwa
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 8)


Matsuzawa [4] started to characterize generalized functions (for example, distributions or hyperfunctions) on ℝn as initial values of heat functions. His idea is valid even for quasi-analytic ultradistri- butions in \( \varepsilon {{'}_{{\left\{ s \right\}}}}\left( {{{\mathbb{R}}^{n}}} \right) \) with s > 1/2. Note that functions in ε{s}(ℝn)are non-quasi-analytic if s > 1 but quasi-analytic if s ≤ 1. We propose a method to extend Matuzawa’s idea for wider range of s.

In the first part [7] we studied generalized functions on the one- dimensional sphere (that is, the circle). We study here generalized functions on the n-dimensional sphere \( {\mathbb{S}^n} \) with n > 1, expanding them into the spherical harmonic functions.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S-Y. Chung and D. Kim: Representation of quasianalytic ultradistributions, Arkiv for matematik, 31(1993), 51–60.MathSciNetCrossRefGoogle Scholar
  2. [2]
    S-Y. Chung, D. Kim and E-G. Lee: Periodic hyperfunctions and Fourier series, (preprint)Google Scholar
  3. [3]
    K. Fujita and M. Morimoto: Gevrey classes on compact real analytic Riemannian manifolds, Tokyo J. Math., 18(1995), 341–355.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    T. Matsuzawa: A calculus approach to hyperfunctions II, Trans. Amer. Math. Soc. 313(1989), 619–654.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M.Morimoto: Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications 11 1?WN-Polish Scientific Publishers, Warsaw, 1983, 223–250.Google Scholar
  6. [6]
    M. Morimoto. Analytic Functionals on the Sphere, Translations of Mathematical Monographs vol. 178, AMS, September 1998, 170 pp.Google Scholar
  7. [7]
    M.Morimoto and M.Suwa: A characterization of analytic function-als on the sphere I, to appear in “Finite or Infinite Dimensional Complex Analysis: Seventh International Colloquium”, Lecture Notes in Pure & Applied Mathematics, Marcel Dekker.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Mitsuo Morimoto
    • 1
  • Masanori Suwa
    • 2
  1. 1.Department of MathematicsInternational Christian UniversityTokyoJapan
  2. 2.Department of MathematicsSophia UniversityTokyoJapan

Personalised recommendations