Skip to main content

Convergence Property of Standard Transition Functions

  • Chapter
Markov Processes and Controlled Markov Chains
  • 752 Accesses

Abstract

A standard transition function P = (P ij (t)) is called ergodic (positive recurrent) if there exists a probability measure π = (π i ; iE) such that

$$ \mathop{{\lim }}\limits_{{t \to \infty }} {{p}_{i}}_{j}(t) = {{\pi }_{j}} > 0,\forall i \in E $$
(0.1)

The aim of this paper is to discuss the convergence problem in (0.1). We shall study four special types of convergence: the so-called strong ergodicity, uniform polynomial convergence, L 2-exponential ergodicity and exponential ergodicity. Our main interest is always to characterize these properties in terms of the q-matrix.

Supported by the National Natural Science Foundation of China (19871006)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Anderson (1991) Continuous-Time Markov Chain. Springer, Berlin.

    Book  Google Scholar 

  2. S. Asmussen and H. Hering (1983) Branching Processes. Birkhauser, Basel.

    MATH  Google Scholar 

  3. K.B. Athreya and P.E. Neg (1972) Branching Processes. Springer, Berlin.

    MATH  Google Scholar 

  4. A.Y. Chen and H.J. Zhang (1999a) Existence and Uniqueness of Stochastically Monotone Q-Processes. To appear in Southeast Asian Bulletin of Mathematics. 23: 559–583

    MATH  Google Scholar 

  5. A. Y. Chen and H.J. Zhang (1999b) Stochastic Monotonicity and Duality for Continuous Time Markov Chains with General Q-matrix. Southeast Asian Bulletin of Mathematics. 23: 383–408.

    MATH  Google Scholar 

  6. M.F. Chen (1992) From Markov Chains to Non-Equilibrium Particle System. World Scientific, Singapore.

    Google Scholar 

  7. R.R. Chen (1997) An Extended Class of Time-Continuous Branching Processes. J. Appl. Prob. 34, 14–23.

    Article  MATH  Google Scholar 

  8. K.L. Chung (1967) Markov Chains with Stationary Transition Probabilities. Springer-Verlag, Berlin/New York.

    MATH  Google Scholar 

  9. T.E. Harris (1963) Branching Processes. Springer, Berlin.

    MATH  Google Scholar 

  10. Z.T. Hou and Q.F. Guo (1988) Time-Homogeneous Markov Processes with Countable State Space. Springer-Verlag, New York.

    Google Scholar 

  11. T.M. Liggett (1985) Interacting Particle System. Springer-Verlag, Berlin/New York.

    Book  Google Scholar 

  12. Reuter and Riley (1972) The Feller Property for Markov Semigroups on a Countable State Space. J. London Math. Soc.(2), 267–275.

    MathSciNet  Google Scholar 

  13. D. Siegmund (1976) The Equivalence of Absorbing and Reflecting Barrier Problems for Stochastically Monotone Markov Process. Ann. Prob. 4, No. 6, 914–924.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.L. Tweedie (1981) Criteria for Ergodicity, Exponential and Strong Ergodicity of Markov Processes. J. Appl. Prob. 18, 122–130.

    Article  MathSciNet  MATH  Google Scholar 

  15. X.Q. Yang (1990) The Construction Theory of Denumerable Markov Processes. Wiley, New York.

    MATH  Google Scholar 

  16. H.J. Zhang and A.Y. Chen (1999) Stochastic Comparability and Dual Q-Function. Journal of Mathematical Analysis and Applications 234, 482–499.

    Article  MathSciNet  MATH  Google Scholar 

  17. H.J. Zhang, A.Y. Chen, X. Lin and Z.T. Hou (1999a) The Strong Ergodicity of Monotone q-Functions. Submitted.

    Google Scholar 

  18. H.J. Zhang, A.Y. Chen, X. Lin and Z.T. Hou (1999b) Quadratic Branching Q-Matrix. Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zhang, H., Mei, Q., Lin, X., Hou, Z. (2002). Convergence Property of Standard Transition Functions. In: Hou, Z., Filar, J.A., Chen, A. (eds) Markov Processes and Controlled Markov Chains. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0265-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0265-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7968-3

  • Online ISBN: 978-1-4613-0265-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics