Skip to main content
  • 748 Accesses

Abstract

Connections between diffusion processes and linear PDE involving second order uniformly elliptic operators L are known for a long time. Superdiffusions are related, in a similar way, to equations involving semi-linear differential operators Luψ(u).

Partially supported by National Science Foundation Grant DMS-9971009

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.B. Dynkin, Superprocesses and partial differential equations, Ann. Probab. 21(1993), 1185–1262.

    Article  MathSciNet  MATH  Google Scholar 

  2. E.B. Dynkin, Stochastic boundary values and boundary singularities for solutions of the equation Lu = ua, J. Functional Analysis 153(1998), 147–186.

    Article  MathSciNet  MATH  Google Scholar 

  3. E.B. Dynkin and S. E. Kuznetsov, Linear additive functionals of superdiffusions and related nonlinear p.d.e., Trans. Amer. Math. Soc. 348(1996), 1959–1987.

    Article  MathSciNet  MATH  Google Scholar 

  4. E.B. Dynkin and S. E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure & Appl. Math 49(1996), 125–176.

    Article  MathSciNet  MATH  Google Scholar 

  5. E.B. Dynkin and S. E. Kuznetsov, Nonlinear parabolic p.d.e. and additive functionals of superdiffusions, Ann. Probab. 25(1997), 662–701.

    Article  MathSciNet  MATH  Google Scholar 

  6. E.B. Dynkin and S. E. Kuznetsov, Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math. 51(1998), 897–936.

    Article  MathSciNet  Google Scholar 

  7. E.B. Dynkin and S. E. Kuznetsov, Solutions of nonlinear differential equations on a Riemannian manifold and their trace on the Martin boundary, Transact. Amer. Math. Soc. 350(1998), 4521–4552.

    Article  MathSciNet  MATH  Google Scholar 

  8. E.B. Dynkin and S. E. Kuznetsov, Trace on the boundary for solutions of nonlinear differential equations, Transact. Amer. Math. Soc. 350(1998), 4499–4519.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math.J. 64(1991), 271–324.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.B. Keller, On the solutions of Δu = f (u), Comm. Pure Appl. Math. 10(1957), 503–510.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.E. Kuznetsov, σ-moderate solutions of Lu = ua and fine trace on the boundary, C. R. Acad. Sci. Paris, Série I 326(1998), 1189–1194.

    MATH  Google Scholar 

  12. J.-F. Le Gall, Solutions positives de Δu = u2 dans le disque unité, C.R. Acad. Sci. Paris, Série I 317(1993), 873–878.

    MATH  Google Scholar 

  13. J.-F. Le Gall, The Brownian snake and solutions of Δu = u2 in a domain, Probab. Theory Relat. Fields 102(1995), 393–402.

    Article  MATH  Google Scholar 

  14. J.-F. Le Gall, A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic differential equation, J. Appl.Math. Stochast. Analysis 9(1996), 399–414.

    Article  MATH  Google Scholar 

  15. J.-F. Le Gall, A probabilistic Poisson representation for positive solutions of Δu = u 2 in a planar domain, Comm. Pure & Appl Math. (1997), 69 - 103.

    Google Scholar 

  16. M. Marcus and L. Véron, Trace au bord des solutions positives d’équations elliptiques non linéaires, C.R. Acad.Sci Paris 321, ser I(1995), 179–184.

    Google Scholar 

  17. M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations, I: The subcritical case, Arch. Rat. Mech. Anal. 144(1998), 201–231.

    Article  MATH  Google Scholar 

  18. M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: The supercritical case, J. Math. Pures Appl. 77(1998), 481–524.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Osserman, On the inequality Δu> f(u), Pacific J. Math, 7(1957), 1641 - 1647.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kuznetsov, S.E. (2002). Boundary Theory for Superdiffusions. In: Hou, Z., Filar, J.A., Chen, A. (eds) Markov Processes and Controlled Markov Chains. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0265-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0265-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7968-3

  • Online ISBN: 978-1-4613-0265-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics