Skip to main content

Steiner Minimum Trees in Uniform Orientation Metrics

  • Chapter
Book cover Steiner Trees in Industry

Part of the book series: Combinatorial Optimization ((COOP,volume 11))

Abstract

Let N be a set of points in the plane. Informally, the Steiner tree problem asks us to construct a network, known as a Steiner minimum network or Steiner minimum tree, interconnecting the points in N, such that the network has the shortest length possible with respect to a given distance function. Unlike minimum spanning trees, a Steiner minimum tree may contain vertices of degree 3 or more not in N. These points are usually referred to as Steiner points, and the inclusion of these points makes the Steiner problem an NP-hard problem.

Research partially supported by a grant from the Australian Research Council

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alfaro, M. Conger, K. Hodges, A. Levy, R. Kochar, L. Kuklinski, Z. Mahmood and K. von Haam, The structure of singularities in Φ-minimizing networks in R 2, Pac. J. Math., Vol.149 No.2 (1991) pp. 201–210.

    MATH  Google Scholar 

  2. B. Berger, M.L. Brady, D.J. Brown and T. Leighton, Nearly optimal algorithms and bounds for multilayer channel routing, J. ACM, Vol.42 No.2 (1995) pp. 500–542.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.L. Brady, D.J. Brown and K.D. Powers, Channel routing on a 60° grid, Proc. Conf. Information Science and Systems, 1990 pp. 926–931.

    Google Scholar 

  4. M.L. Brady, D.J. Brown and K.D. Powers, Hexagonal models for channel routing, Algorithmica, Vol.19 (1997) pp. 263–290.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Brazil, D.A. Thomas and J.F. Weng, Minimum networks in uniform orientation metrics, SIAM J. Comput., Vol.30 (2000) pp. 1579–1593.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Brazil, D.A. Thomas and J.F. Weng, Optimal patterns for Steiner minimum networks in uniform orientation metrics, Networks, to appear.

    Google Scholar 

  7. S. Burman, H. Chen and N. Sherwani, Improved global routing using λ-geometry, Proc. 29th Annual Allerton Conf. on Communications,Computing and Controls, 1991.

    Google Scholar 

  8. G.D. Chakerian and M.A. Ghandehari, The Fermat problem in Minkowski space, Geom. Dedicata, Vol. 17 (1985) pp. 227–238.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Chaudhary and P. Robinson, Channel routing by sorting, IEEE Trans. Computer-Aided Design, Vol.10 No.6 (1991) pp. 754–760.

    Article  Google Scholar 

  10. P. Chaudhuri, An ecological approach to wire routing, IEEE International Symposium. on Circuits and Systems’79, 1979 pp. 854–857.

    Google Scholar 

  11. C.Y.R. Chen, C.Y. Hou and U. Singh, Optimal algorithms for bubble sort based non-Manhattan channel routing, IEEE Trans. Computer-Aided Design, Vol.13 No.5 (1994) pp, 603–609.

    Article  Google Scholar 

  12. D. Cieslik, The vertex degrees of Steiner minimal trees in Banach-Minkowski spaces, Geombinatorics, Vol. 3 (1994) pp. 75–82.

    MathSciNet  MATH  Google Scholar 

  13. D. Cieslik, Steiner Minimal Trees, (Kluwer Academic Publishers, Dordrecht, 1998).

    MATH  Google Scholar 

  14. E.J. Cockayne, On the Steiner problem, Cand. Math. Bull., Vol.10 (1967) pp. 431–450.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.-Z. Du, B. Gao, R.L. Graham, Z.C. Liu and P.-J. Wan, Minimum Steiner trees in normed plane, Discrete Comput. Geom., Vol.9 (1993) pp. 351–370.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.-Z. Du and F. K. Hwang, A proof of the Gilbert-Pollak conjecture on the Steiner ratio, Algorithmica, Vol.7 (1992) pp. 121–135.

    Article  MathSciNet  MATH  Google Scholar 

  17. D.-Z. Du and F. K. Hwang, Reducing the Steiner problem in a normed space, SIAM J. Comput., Vol.21 (1992) pp. 1001–1007.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Gao, D.-Z. Du and R.L. Graham, The tight lower bound for the Steiner ratio in Minkowski planes, Proc. Tenth Annual Symposium on Computational Geometry, 1994 pp. 183–191.

    Google Scholar 

  19. M. Hannan, On Steiner’s problem with rectilinear distance, SIAM J. Appli. Math., Vol.14 (1966) pp. 255–265.

    Article  Google Scholar 

  20. F. K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J. Appli. Math., Vol.30 (1976) pp. 104–114.

    Article  MATH  Google Scholar 

  21. F.K. Hwang, D.S. Richards and P. Winter, The Steiner Tree Problem, Annals of Discrete Math. Vol.53. (Elsevier Science Publishers, Amsterdam, 1992).

    Google Scholar 

  22. A.B. Kahng and G. Robins, On Optimal Interconnections for VLSI, (Kluwer Academic Publishers, Boston, 1995).

    MATH  Google Scholar 

  23. C.K. Koh, Steiner Problem in. Octilinear Routing Model, Master Thesis, National University of Singapore, 1995.

    Google Scholar 

  24. D.T. Lee, C.-F. Shen and C.-L. Ding, On Steiner tree problem with 45° routing, IEEE International Symposium on Circuits and Systems’95, 1995 pp. 1680–1683.

    Google Scholar 

  25. D.T. Lee and C.-F. Shen, The Steiner minimal tree problem in the λ-geometry plane, LNCS 1178, Algorithms and Computation, 1996 pp. 247–255.

    Google Scholar 

  26. K.K. Lee and H.W. Leong, SOAR: a channel router for octilinear routing model, Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, 1992 pp. 346–351.

    Google Scholar 

  27. Y. Li, S.K Cheung, K.S. Leung and C.K. Wong, On the steiner tree problem in λ3 metric, IEEE International Symposium. on Circuits and Systems’97, 1997 pp. 1564–1567.

    Google Scholar 

  28. Y. Li, S.K Cheung, K.S. Leung and C.K. Wong, Steiner tree constructions in λ3 metric, IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, Vol.45 No.5 (1998) pp. 563–574.

    Article  Google Scholar 

  29. Y. Li, K.S. Leung and C.K. Wong, Efficient heuristics for orientation metric and Euclidean Steiner tree problems, J. Comb. Optimization, Vol.4 (2000) pp. 79–98.

    Article  MathSciNet  MATH  Google Scholar 

  30. G.-H. Lin, A.P. Thurber and G. Xue, The 1-Steiner problem in λ3 geometry plane, IEEE International Symposium on Circuits and Systems’99, 1999 pp. 125–128.

    Google Scholar 

  31. G.-H. Lin and G. Xue, Reducing the Steiner problem in four uniform orientations, Networks, Vol.35 No.4 (2000) pp. 287–301.

    Article  MathSciNet  MATH  Google Scholar 

  32. G.-H. Lin and G. Xue, A linear time algorithm for computing hexagonal steiner minimum trees for terminals on the boundary of a regular hexagon, IEEE International Symposium, on Circuits and Systems 2000, 2000 pp. 196–199.

    Google Scholar 

  33. G.-H. Lin and G. Xue, Reducing the Steiner problem in an A 3-geometry plane, preprint.

    Google Scholar 

  34. W. Lipski and F.P. Preparata, A uniform approach to layout wirability, Math. System Theory, Vol. 19 (1987) pp. 189–203.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Lodi, F. Luccio and L. Pagli, Routing in times square mode, Inform. Process. Lett., Vol.35 (1990) pp. 41–48.

    Article  MathSciNet  MATH  Google Scholar 

  36. Z.A. Melzak. On the problem of Steiner, Canad. Math. Bull. Vol.4 (1961) pp.143–148.

    Article  MathSciNet  MATH  Google Scholar 

  37. Z.A. Melzak. Companion to Concrete Mathematics Vol. II, (John Wiley &. Sons, New York, 1976).

    MATH  Google Scholar 

  38. J.H. Rubinstein and D.A. Thomas, The calculus of variations and the Steiner problem, Ann. Oper. Res., Vol. 33 (1991) pp. 481–499.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Sarrafzadeh, Hierarchical Approaches to VLSI Circuit Layout, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1986.

    Google Scholar 

  40. M. Sarrafzadeh and C.K. Wong, Hierarchical Steiner tree construction in uniform orientations, IEEE Trans. Computer-Aided Design, Vol.11 No, 9 (1992) pp. 1095–1103.

    Article  Google Scholar 

  41. M. Sarrafzadeh and C.K. Wong, An Introduction to VLSI Physical Design, (McGraw-Hill, New York, 1996).

    Google Scholar 

  42. N. Sherwani, Algorithms for VLSI Physical Design Automation, Third Edition, (Kluwer Academic Publishers, Boston, 1999).

    MATH  Google Scholar 

  43. X. Song and X. Tan, An optimal channel-routing algorithm in the times square model, IEEE Trans. Computer-Aided Design, Vol.13 No.7 (1994) pp. 891–898.

    Article  Google Scholar 

  44. K.J. Swanepoel, The local Steiner problem in normed planes, Networks, Vol.36 No.2 (2000) pp. 104–113.

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Tan and X. Song, Hexagonal 3-layer channel routing, Information Proc. Letters, Vol.55 No.4 (1995) pp. 223–228.

    Article  MATH  Google Scholar 

  46. X. Tan and X. Song, Routing multiterminal nets on a hexagonal grid, Discrete Appl. Math., Vol.90 (1999) pp. 245–255.

    Article  MathSciNet  MATH  Google Scholar 

  47. I.G. Tollis, Techniques for wiring in non-square grids, IEEE International Symposium, on Circuits and Systems’89, 1989 pp. 66–69.

    Chapter  Google Scholar 

  48. I.G. Tollis, Wiring in uniform grids and two-colorable maps, Integration, the VLSI J., Vol.12 (1991) pp. 189–210.

    Article  Google Scholar 

  49. D.M. Warme, P. Winter and M. Zachariasen, Exact algorithms for plane Steiner tree problems: a computational study, in D.-Z. Du, J.M. Smith and J.H. Rubinstein (eds.) Advances in Steiner Trees, (Dordrecht, Kluwer Academic Publisher, 2000) pp. 81–116.

    Google Scholar 

  50. D.C. Wang, Novel routing schemes for IC layout Part I: two-layer channel routing, Proc. 28th ACM/IEEE Design Automation Conf., 1991 pp. 49–53.

    Chapter  Google Scholar 

  51. T. Whitney and C. Mead, An integer based hierarchical representation for VLSI, Advanced Research in VLSI (Proc. 4th MIT Conf.), 1986 pp. 241–257.

    Google Scholar 

  52. P. Widmayer, Y.F. Wu and C.K. Wong, On some distance problems in fixed orientations, SIAM J. Comput., Vol.16 (1987) pp. 728–746.

    Article  MathSciNet  MATH  Google Scholar 

  53. G.Y. Yan, A. Albrecht, G.H.F. Young and C.K. Wong, The Steiner tree problem in orientation metrics, J. Computer and System Science, Vol.55 (1997) pp. 529–546.

    Article  MathSciNet  MATH  Google Scholar 

  54. J.-T. Yan, An improved optimal algorithm for bubble-sorting-based non-Manhattan channel routing, IEEE Trans. Computer-Aided Design, Vol.18 No. 2 (1999) pp. 163–1103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brazil, M. (2001). Steiner Minimum Trees in Uniform Orientation Metrics. In: Cheng, X.Z., Du, DZ. (eds) Steiner Trees in Industry. Combinatorial Optimization, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0255-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0255-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7963-8

  • Online ISBN: 978-1-4613-0255-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics