Skip to main content

The Continuum Model of Transportation Problem

  • Chapter

Part of the Nonconvex Optimization and Its Applications book series (NOIA,volume 68)

Abstract

A continuum model of transportation network is considered in presence of capacity constraints on the flow. The equilibrium conditions are expressed in terms of a Variational Inequality for which an existence theorem and a computational procedure are provided.

Keywords

  • Variational Inequality
  • continuum traffic equilibrium problems
  • capacity constraints
  • quasi-relative interior
  • Lagrangean theory
  • subgradient method

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-0239-1_3
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4613-0239-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Borwein-A.S. Lewis, Practical conditions for Fenchel duality in Infinite Dimensions, Pitman Research Notes in Mathematics Series 252, M.A. Théra-J.B. Baillon Editors, 83–89.

    Google Scholar 

  2. S. Dafermos, Continuum Modelling of Transportation Networks, Transportation Res. 14 B (1980), 295–301.

    MathSciNet  CrossRef  Google Scholar 

  3. P. Daniele, Lagrangean Function for Dynamic Variational Inequalities, Rendiconti del Circolo Matematico di Palermo,, Serie II, 58(1999), 101–119.

    MathSciNet  Google Scholar 

  4. P. Daniele-A. Maugeri, Vector Variational Inequalities and a Continuum Modelling of Traffic Equilibrium Problem, in Vector Variational Inequalities and Vector Equilibria, F. Giannessi Ed., Kluwer Academic Publishers (2000), 97–111.

    CrossRef  Google Scholar 

  5. J. Gwinner, On continuum Modelling of Large Dense Networks in Urban Road Traffic, in Mathematics in Transport Planning and Control ( J.D. Griffiths Ed.), IMA Conference, Cardiff (1988).

    Google Scholar 

  6. G. Idone, Variational Inequalities and Applications to a Continuum Model of Transportation Network with Capacity Constraints, to appear in Journal of Global Optimization, 2002.

    Google Scholar 

  7. A. Maugeri, Dynamic Models and Generalized Equilibrium Problems, in New Trends in Mathematical Programming, F. Giannessi et al. Eds., Kluwer Academis Publishers (1998), 191–202.

    Google Scholar 

  8. A. Maugeri, New Classes of Variational Inequalities anf Applications to Equilibrium Problems, Methods of Operation Research 53(1985), 129–131.

    Google Scholar 

  9. A. Maugeri, New Classes of Variational Inequalities anf Applications to Equilibrium Problems, Rendiconti Accademia Nazionale delle Scienze deta dei XL 11(1987), 224–285.

    MathSciNet  Google Scholar 

  10. A. Maugeri, Equilibrium Problems and Variational Inequalities, in Equilibrium Problems: Nonsmooth Optimization and Variational Inequalities Models, A. Maugeri, F. Giannessi, P. Pardalos Eds., Kluwer Academic Publishers (2001), 187–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Daniele, P., Idone, G., Maugeri, A. (2003). The Continuum Model of Transportation Problem. In: Daniele, P., Giannessi, F., Maugeri, A. (eds) Equilibrium Problems and Variational Models. Nonconvex Optimization and Its Applications, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0239-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0239-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7955-3

  • Online ISBN: 978-1-4613-0239-1

  • eBook Packages: Springer Book Archive