Skip to main content

The Seizure Prediction Characteristic

A new terminology and assessment criterion for epileptic seizure prediction methods

  • Chapter

Part of the Biocomputing book series (BCOM,volume 2)

Abstract

Epilepsy is characterized by the sudden occurrence of seizures disturbing the perception or behavior of epileptic patients. Several prediction methods have claimed to be able to predict seizures based on EEG-recordings minutes in advance, which opens up new approaches to treat the disease. However, the term seizure prediction is not unequivocally defined and different assessment criteria for prediction methods exist which impedes the comparison between methods. Moreover, only little attention is paid to the dependency between sensitivity and false prediction rate. We address these shortcomings and introduce a terminology and assessment criterion for seizure prediction methods based on statistical and clinical considerations: the seizure prediction characteristic.

Keywords

  • Epilepsy
  • seizure prediction
  • seizure prediction characteristic
  • sensitivity
  • false prediction rate

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-0225-4_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4613-0225-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, J. and Burr, W. (2001). Course of chronic focal epilepsy resistant to anticonvulsant treatment. Seizure, 10: 239–46.

    CrossRef  Google Scholar 

  2. De Clercq, W., Lemmerling, P., Van Huffel, S., and Van Paesschen, W. (2002). Evaluation of methods for determining a preictal state in scalp-eeg measurements. Biosignal Processing, 10.

    Google Scholar 

  3. Haut, S. R., Swick, C., Freeman, K., and Spencer, S. (2002). Seizure clustering during epilepsy monitoring. Epilepsia, 43 (7): 711–715.

    CrossRef  Google Scholar 

  4. Iasemidis, L., Pardalos, P., Sackellares, J., and Shiau, D. (2001). Quadratic binary programming and dynamical system approach to determine the predictibilty of epileptic seizures. Journal of Combinatorial Optimization, 5: 9–26.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Jerger, K. K., Netoff, T. I., Francis, J. T., Sauer, T., Pecora, L., Weinstein, S. L., and Schiff, S. J. (2001). Early seizure detection. Journal of Clin. Neurophysiology, 18: 259–268.

    CrossRef  Google Scholar 

  6. Le Van Quyen, M., Adam, C., Martinerie, J., Baulac, M., Clemenceau, S., and Varela, F. (2000). Spatio-temporal characterizations of non-linear changes in intracranial activities prior to human temporal lobe seizures. European Journal of Neuroscience, 12: 2124–2134.

    CrossRef  Google Scholar 

  7. Le Van Quyen, M., Martinerie, J., Baulac,M., and Varela, F. (1999). Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport, 10: 2149–2155.

    CrossRef  Google Scholar 

  8. Le Van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D’Have, M., Adam, C., Renault, B., Varela, F., and Baulac, M. (2001). Anticipation of epileptic seizures from standard EEG recordings. The Lancet, 357: 183–188.

    CrossRef  Google Scholar 

  9. Lehnertz, K., Andrzejak, R., Arnhold, J., Kreuz, T., Mormann, F., Rieke, C., Widman, G., and Elger, C. (2001). Nonlinear EEG analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention. J Clin. Neurophysiol., 18: 209–222.

    CrossRef  Google Scholar 

  10. Lehnertz, K. and Elger, C. (1998). Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett., 80: 5019–5022.

    CrossRef  Google Scholar 

  11. Litt, B. and Echauz, J. (2002). Prediction of epileptic seizures. The Lancet Neurology, 1: 22–30.

    CrossRef  Google Scholar 

  12. Litt, B. and Lehnertz, K. (2002). Seizure prediction and the preseizure period. Current Opinion in Neurology, 15: 173–177.

    CrossRef  Google Scholar 

  13. Martinerie, J., Adam, C., Quyen, M. L. V., Baulac, M., Clemenceau, S., Renault, B., and Varela, F. (1998). Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine, 4: 1173–1176.

    CrossRef  Google Scholar 

  14. Mormann, F., Andrzejak, R., Kreuz, T., Rieke, C., David, P., Elger, C., and Lehnertz, K. (2003). Automated detection of a pre-seizure state based on a decrease in synchronization in intracranial EEG recordings from epilepsy patient. Phys. Rev. E, 67: 021912.

    Google Scholar 

  15. Navarro, V., Martinerie, J., Le Van Quyen, M., Clemenceau, S., Adam, C., Baulac, M., and Varela, F. (2002). Seizure anticipation in human neocortical partial epilepsy. Brain, 125: 640–655.

    CrossRef  Google Scholar 

  16. Osorio, I., Frei, M., and Wilkinson, S. (1998). Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia, 39 (6): 615–27.

    CrossRef  Google Scholar 

  17. Schindler, K., Wiest, R., Kollar, M., and Donati, F. (2002). EEG analysis with simulated neuronal cell models helps to detect pre-seizure changes. Clin. Neurophysiol., 113: 604–614.

    CrossRef  Google Scholar 

  18. Winterhalder, M., Maiwald, T., Voss, H., Aschenbrenner-Scheibe, R., Timmer, J., and Schulze-Bonhage, A. (2003a). The seizure prediction characteristic - a general framework to assess and compare seizure prediction methods. Epilepsy and Behavior,4(3):318–325.

    CrossRef  Google Scholar 

  19. Winterhalder, M., Maiwald, T., Voss, H. U., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A., and Timmer, J. (2003b). Seizure prediction methods - assessment and comparison by means of the seizure prediction characteristic. In this volume. Kluwer Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Maiwald, T., Winterhalder, M., Voss, H.U., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A., Timmer, J. (2004). The Seizure Prediction Characteristic. In: Pardalos, P.M., Sackellares, J.C., Carney, P.R., Iasemidis, L.D. (eds) Quantitative Neuroscience. Biocomputing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0225-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0225-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7951-5

  • Online ISBN: 978-1-4613-0225-4

  • eBook Packages: Springer Book Archive