Two Experimental Settings in Clinical Trials: Predictive Criteria for Choosing the Sample Size in Interval Estimation

  • F. De Santis
  • M. Perone Pacifico


Determination of the optimal sample size is a fundamental step in many statistical designs, especially relevant in biomedical studies and in all situations where data are difficult to collect.


Posterior Distribution Posterior Density Interval Estimation Predictive Distribution Sample Size Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adcock, J. (1997). Sample size determination: a review. The Statistician, 46, 261–283.Google Scholar
  2. Beal, S. L. (1989). Sample size determination for confidence intervals on the population mean and on the difference between two population means. Biometrics, 45, 969–977.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Berger, J. O. (1985). Statistical decision theory and Bayesian analysis, 2nd edition. Springer-Verlag, New York.zbMATHGoogle Scholar
  4. Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian theory. Wiley.zbMATHCrossRefGoogle Scholar
  5. Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science, 10, 237–304.MathSciNetCrossRefGoogle Scholar
  6. Dasgupta, A. and Vidakovic, B. (1997). Sample size problems in ANOVA: Bayesian point of view. Journal of Statistical Planning and Inference, 65, 335–347.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Errington, R. D. et al.(1991). High energy neutron treatment for pelvic cancers: study stopped because of increasing mortality. The British Medical Journal, 302, 1045–1051.CrossRefGoogle Scholar
  8. Freireich, E. J. et al.(1963). The effect of 6-Mercatopurine on the duration of steroidinduced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood, 21, 699–716.Google Scholar
  9. Ibrahim, J. G., Chen, M. H., and Sinha, D. (2001). Bayesian survival analysis. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  10. Joseph, L. and Belisle, P. (1997). Bayesian sample size determination for normal means and difference between normal means. The Statistician, 46, 209–226.Google Scholar
  11. Joseph, L., du Berger, R. and Belisle, P. (1997). Bayesian and mixed Bayesianflikelihood criteria for sample size determination. Statistics in Medicine, 16, 769–781.CrossRefGoogle Scholar
  12. Joseph, L., Wolfson, D. and du Berger, R. (1995). Sample size calculation for binomial proportions via highest posterior density intervals. The Statistician, 44, 143–154.CrossRefGoogle Scholar
  13. Lee, S. J. and Zelen, M. (2000). Clinical trials and sample size considerations: another perspective. Statistical Science, 15, 95–110.Google Scholar
  14. Lindley, D. V. (1997). The choice of sample size. The Statistician, 46, 129–138.Google Scholar
  15. Pham-Gia, T. G. and Turkkan, N. (1992). Sample size determination in Bayesian analysis. The Statistician, 41, 389–397.CrossRefGoogle Scholar
  16. Piccinato, L. (1996). Metodi per le decisioni statistiche. Springer-Verlag Italia.zbMATHGoogle Scholar
  17. Raiffa, H. and Schlaifer, R. (1961). Applied statistical decision theory. Boston: Harvard University Graduate School of Business Administration.Google Scholar
  18. Spiegelhalter, D. J. and Freedman, L. S. (1986). A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion. Statistics in Medicine, 5, 1–13.CrossRefGoogle Scholar
  19. Spiegelhalter, D. J., Freedman, L. S. and Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. Journal of the Royal Statistical Society, 157, 357–416.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Verdinelli, I., (1996). Bayesian design of experiments for the linear model. Ph.D. Thesis Department of Statistics, Carnegie Mellon University.Google Scholar
  21. Weiss, R. (1997). Bayesian sample size calculations for hypothesis testing. The Statistician, 46, 209–226.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • F. De Santis
    • 1
  • M. Perone Pacifico
    • 1
  1. 1.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità di Roma “La Sapienza”Italy

Personalised recommendations