Advertisement

Answering Two Biological Questions with a Latent Class Model via MCMC Applied to Capture-Recapture Data

  • F. Bartolucci
  • A. Mira
  • L. Scaccia

Abstract

A well-known method for estimating the size, N, of a certain population is the capture-recapture method (for a review see Yip et al., 1995a and Schwarz and Seber, 1999). The first motivations to the development of these methods arose in biology where researchers were interested in estimating the number of animals of a certain species (see, for instance, Schnabel, 1938, and Darroch, 1958). Subsequently, this methodology was also applied in medical and social contexts where it is important to estimate the number of subjects with a certain disease or in a particular situation (Yip et al., 1995b).

Keywords

Posterior Distribution Markov Chain Monte Carlo Latent Class Credibility Interval Latent Class Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. (1994). Simple capture-recapture models permitting unequal catchability and variable sampling effort. Biometrics 50, 494–500.CrossRefGoogle Scholar
  2. Bartolucci, F. and Forcina, A. (2001). The Analysis of Capture-Recapture Data with a Rasch-type Model allowing for Conditional Dependence and Multidimensionality. Biometrics 57, 714–719.MathSciNetMATHCrossRefGoogle Scholar
  3. Basu, S. and Ebrahimi, N. (2001). Bayesian capture-recapture methods for error detection and estimation of population size: hetorogeneity and dependence. Biometrika 88, 269–279.MathSciNetMATHCrossRefGoogle Scholar
  4. Biggeri, A., Stanghellini, E., Merletti, F. and Marchi, M. (1999). Latent class models for varying catchability and correlation among sources in capture-recapture estimation of the size of a human population. Statistica Applicata 11, 563–586.Google Scholar
  5. Bruno, G., Biggeri, A., Merletti, F., Laporte, R., McCarthy, D. and Pagano, G. (1994). Applications of capture-recapture to count diabetes. Diabetes Care 17, 548–556.CrossRefGoogle Scholar
  6. Castledine, B. J. (1981), A Bayesian analysis of multiple-recapture sampling for a closed population, Biometrika 68, 197–210.MathSciNetMATHCrossRefGoogle Scholar
  7. Cormack, R. M. (1992). Interval estimation for mark-recapture studies of closed populations. Biometrics 48, 567–576.MathSciNetCrossRefGoogle Scholar
  8. Darroch, J. N. (1958). The multiple-recapture census I. Estimation of a closed population. Biometrika 45, 343–359.MathSciNetMATHGoogle Scholar
  9. Darroch, J. N., Fienberg, S. E., Glonek, G. F. V. and Junker, B. W. (1993). A three-sample multiple-recapture approach to census population estimation with heterogeneous catchability. Journal of the American Statistical Association 88, 1137–1148.CrossRefGoogle Scholar
  10. Fienberg, S. E. (1972). The multiple recapture census for closed populations and incomplete 2k contingency tables. Biometrika 59, 591–603.MathSciNetMATHGoogle Scholar
  11. Fienberg, S. E., Johnson, M. S. and Junker, B. W. (1999). Classical multilevel and Bayesian approaches to population size estimation using multiple lists. Journal of the Royal Statistical Society A 162, 383–405.CrossRefGoogle Scholar
  12. George, E. I. and Robert, C. P. (1992). Capture-recapture estimation via Gibbs sampling. Biometrika 79, 677–683.MathSciNetMATHGoogle Scholar
  13. Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.MathSciNetMATHCrossRefGoogle Scholar
  14. Green, P. J. and Mira, A. (2001), Delayed Rejection in Reversible Jump Metropolis-Hastings. Biometrika 88, 1035–1053.MathSciNetMATHGoogle Scholar
  15. King, R. and Brooks, S. P. (2001). On the Bayesian analysis of population size. Biometrika 88, 317–336.MathSciNetMATHCrossRefGoogle Scholar
  16. Lindsay, B., Clogg, C. and Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association 86, 96–107.MathSciNetMATHCrossRefGoogle Scholar
  17. Madigan, D. and York, J. C. (1997). Bayesian methods for estimation of the size of a closed population. Biometrika 84, 19–31.MathSciNetMATHCrossRefGoogle Scholar
  18. Peskun, P. H. (1973). Optimum Monte Carlo sampling using Markov chains. Biometrika 60, 607–612.MathSciNetMATHCrossRefGoogle Scholar
  19. Sanathanan, L. (1972). Estimating the size of a multinomial population. The Annals of Mathematical Statistics 43, 142–152.MathSciNetMATHCrossRefGoogle Scholar
  20. Schnabel, Z E (1938). The estimation of the total fish population of a lake. American Mathematical Monthly 45, 348–52.MathSciNetMATHCrossRefGoogle Scholar
  21. Schwarz, C. J. and Seber, A. F. (1999). Estimating animal abundance: review III. Statistical Science 14, 427–456.CrossRefGoogle Scholar
  22. Smith, P. J. (1991). Bayesian analyses for a multiple capture-recapture model. Biometrika 78, 399–407.MathSciNetCrossRefGoogle Scholar
  23. Sokal, A. D. (1989). Monte Carlo methods in statistical mechanics: foundations and new algorithms. Cours de Troisième Cycle de la Phisyque en Suisse Romande, Lausanne.Google Scholar
  24. Tardella, L. (2002). A new Bayesian method for nonparametric capture-recapture models in presence of heterogeneity. Biometrika 89, 807–817.MathSciNetMATHCrossRefGoogle Scholar
  25. Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics 22, 1701–1762.MathSciNetMATHCrossRefGoogle Scholar
  26. Tierney, L. (1998). A Note on Metropolis-Hastings kernels for general state spaces. Annals of Applied Probability 8, 1–9.MathSciNetMATHCrossRefGoogle Scholar
  27. Tierney, L. and Mira, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18, 2507–2515.CrossRefGoogle Scholar
  28. Yip, P. S. F., Bruno, C., Tajima, N., Seber, C. A. F., Buckland, S. T., Cormack, R. M., Unwin, N., Chang, Y.-F., Fienberg, S. E., Junker, B. W., LaPorte, R. E., Libman, I. M. and McCarty, D. J. (1995a). Capture-recapture and multiple-record systems estimation I: history and theoretical development. American Journal of Epidemiology 142, 1047–1058.Google Scholar
  29. Yip, P. S. F., Bruno, C., Tajima, N., Serer, C. A. F., Buckland, S. T., Cormack, R. M., Unwin, N., Chang, Y.-F., Fienberg, S. E., Junker, B. W., LaPorte, R. E., Libman, I. M. and McCarty, D. J. (1995b). Capture-recapture and multiple-record systems estimation II: applications in human diseases. American Journal of Epidemiology 142, 1059–1068.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • F. Bartolucci
    • 1
  • A. Mira
    • 2
  • L. Scaccia
    • 3
  1. 1.Istituto di Scienze EconomicheUniversity of UrbinoItaly
  2. 2.Dipartimento di EconomiaUniversity of InsubriaItaly
  3. 3.Dipartimento di Scienze StatisticheUniversity of PerugiaItaly

Personalised recommendations