Skip to main content

Coherence Control of Photocurrents in Semiconductors

  • Chapter
Ultrafast Phenomena in Semiconductors

Abstract

We present a general overview of our experimental and theoretical work on the use of the phase properties of one or more ultrashort optical pulses to generate and control electrical currents in semiconductors. This is discussed in a tutorial fashion as one manifestation of what has come to be called coherence control. Following a brief introduction to the basic concepts of coherence control phenomena, including examples of related work, we present two theoretical views of the current generation process. In the quantum viewpoint, current production occurs through generation of polar distributions of free carriers following interference of competing absorption pathways. For a monochromatic incident beam this interference is associated with different polarization components, while in the two color-case, involving harmonically related beams, it is associated with single and two photon absorption pathways. From a macroscopic viewpoint the currents arise because of divergences in imaginary parts of nonlinear susceptibilities, which are a measure of how a system provides a response to coherent light. We illustrate the main features of coherently controlled currents in the two-color case with experimental data for GaAs or LT-GaAs at room temperature using femtosecond, picosecond, or nanosecond pulses, while we demonstrate single-color current generation and control using CdSe in conjunction with cw or femtosecond lasers. A simple circuit model is used to discuss the steady-state current response of a metal-semiconductor-metal device illuminated by a train of incident pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Manykin and A.M. Afanas’ev, Sov. Phys. JETP 25, 828–830 (1967), (J. Exptl. Theor. Phys. (USSR) 52, 1246–9 (1967)).

    Google Scholar 

  2. D.J. Jackson and J.J. Wynne, Phys. Rev. Lett., 49, 543–546 (1972).

    Article  Google Scholar 

  3. C. Chen, Y.-Y. Yin, and D. S. Elliott, Phys. Rev. Lett. 64, 507–510 (1990).

    Article  CAS  Google Scholar 

  4. A. Shnitman, I. Sofer, I. Golub, A. Yogev, M. Shapiro, Z. Chen, and P. Brumer, Phys. Rev. Lett. 76, 2886–2889 (1996).

    Article  CAS  Google Scholar 

  5. H. G. Muller, P. H. Bucksbaum, D. W. Schumacher, and A. Zavriyev, J. Phys. B 23, 2761–2764 (1990).

    Article  CAS  Google Scholar 

  6. J.D. Corless and C.R. Stroud, Jr., Phys. Rev. Lett. 79, 637–640 (1997).

    Article  CAS  Google Scholar 

  7. B. Sheehy, B. Walker, and L.F. DiMauro, Phys. Rev. Lett. 74, 4799–4802 (1995).

    Article  CAS  Google Scholar 

  8. Yu.E. Kapitzky and B.Ya. Zeldovitch, Opt. Lett., 15, 1236–1238 (1990).

    Article  CAS  Google Scholar 

  9. E.M. Dianov, P.G. Kazanski and D.Y Stepanov, Sov. J. Quantum Electronics. 19, 575–576 (1989) (Kvantovaya, Elektron. 16, 887–8 (1989).

    Article  Google Scholar 

  10. D.Z. Anderson, V. Mizrahi and J.E. Sipe, Opt. Lett. 16, 796–798 (1991).

    Article  CAS  Google Scholar 

  11. P. Brumer and M. Shapiro, Accts. of Chem. Res. 22, 407–413 (1989).

    Article  CAS  Google Scholar 

  12. L. Zhu, V. Kleiman, X. Li, S.P. Lu, K. Trentelman and R.J. Gordon, Science 270 77–80 (1995).

    Article  CAS  Google Scholar 

  13. W.S. Warren, H. Rabitz and M. Dahleh, Science 259, 1581–1589 (1993).

    Article  CAS  Google Scholar 

  14. R.N. Zare, Science 279, 1875–1878 (1998).

    Article  CAS  Google Scholar 

  15. J. Shah, Utrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Verlag, Berlin, 1996).

    Google Scholar 

  16. H.M. van Driel and A. Haché, Conference on Nonlinear Optics; Materials, Fundamentals and Applications, Waikaloa, Hawaii, (Optical Soc. of Am., IEEE) July, 1994.

    Google Scholar 

  17. H.M. van Driel, CAM-94 Physics Mtg. (AIP Conference Proceeding 342; Ed. A Zepeda), 161–166 (1994).

    Google Scholar 

  18. R. Atanasov, A. Haché, J.L.P. Hughes, H.M. van Driel, and J.E. Sipe, Phys. Rev. Lett. 76, 1703–1706 (1996).

    Article  CAS  Google Scholar 

  19. A. Haché, Y. Kostoulas, R. Atanasov, J.L.P. Hughes, J.E. Sipe, and H.M. van Driel, Phys. Rev. Lett. 78, 306–309 (1997).

    Article  Google Scholar 

  20. A. Haché, J.E. Sipe, and H.M. van Driel, IEEE Journal of Quantum Electron. 35, 1144 (1998).

    Article  Google Scholar 

  21. A.P. Heberle, J.J. Baumberg and K. Köhler, Phys. Rev. Lett. 75, 2598–2601 (1995).

    Article  CAS  Google Scholar 

  22. J.J. Baumberg and A.P. Heberle, K. Köhler and K. Ploog, J. Opt. Soc. Am. B, 13 1246–1250 (1996).

    Article  CAS  Google Scholar 

  23. D.S. Citrin and T.B. Norris, IEEE J of Quantum Electron. 33, 404–407 (1997).

    Article  CAS  Google Scholar 

  24. A.P. Heberle, J.P. Baumberg, E. Binder, T. Kuhn, K. Köhler and K.H. Ploog, IEEE J. of Sel. Topics in Quan. Electron., 2, 769 (1996).

    Article  CAS  Google Scholar 

  25. X. Marie, P. Le Jeune, T. Amand, M. Broisseau, J. Barrau, M. Paillard and R. Panel, Phys. Rev. Lett. 79, 3222–3225 (1997).

    Article  CAS  Google Scholar 

  26. N.H. Bonadeo, J. Erland, D. Gammon and D.G. Steel, Science 282, 1473 (1998).

    Article  CAS  Google Scholar 

  27. W. Pötz, Phys. Rev. Lett. 79, 3262–3265 (1997).

    Article  Google Scholar 

  28. W. Pötz, Appl. Phys. Lett. 71, 395–397 (1997).

    Article  Google Scholar 

  29. D.S. Citrin and T.B. Norris, IEEE J. of Selected Topics in Quantum Electronics, 2, 401–409, (1996).

    Article  CAS  Google Scholar 

  30. D.S. Citrin, M. Yamanishi, and Y. Kadoya, IEEE J. of Selected Topics in Quantum Electronics 2, 720–723 (1996).

    Article  CAS  Google Scholar 

  31. Y.-S. Lee, A. Maslov, T.B. Norris, D.S. Citrin, J. Prineas, G. Khitrova and H.M. Gibbs, Int. Quan. Elec. Conf. (postdeadline paper), San Francisco, 1998.

    Google Scholar 

  32. M.U. Wehner, M.H. Ulm, D.S. Chemla and M. Wegner, Phys. Rev. Lett. 80, 1992–1995 (1998). M.U. Wehner, D.S. Chemla, and M. Wegener, Phys. Rev. B 58, 3590–93 (1998).

    Article  CAS  Google Scholar 

  33. M.V. Éntin, Sov. Phys. Semicond. 23, 664–666 (1989); (Fiz.Tekh Poluprovodn. 23 1066–69 (1989).

    Google Scholar 

  34. G. Kurizki, M. Shapiro, and P. Brumer, Phys. Rev. B, 39, 3435–3237 (1989).

    Article  Google Scholar 

  35. B. Ya. Zeldovich and A.N. Chudinov, Pisma Zh. Eksp. Teor. Fiz 50, 405 (1989); N. Baranova, A.N. Chudinov and B. Ya Zel’dovich, Optics. Commun. 79, 116–8 (1990).

    CAS  Google Scholar 

  36. Y.-Y. Yin, C. Chen, D.S. Elliott, and A.V. Smith, Phys. Rev. Lett. 69, 2353–2356 (1992).

    Article  CAS  Google Scholar 

  37. E. Dupont, P.B. Corkum, H.C. Liu, M. Buchanan, and Z.R. Wasilewski, Phys. Rev. Lett. 74, 3596–3599 (1995).

    Article  CAS  Google Scholar 

  38. N. Laman, A.I. Shkrebtii, J.E. Sipe and H.M. van Driel, Appl. Phys. Lett. 75, 2581–2583 (1999).

    Article  CAS  Google Scholar 

  39. See, e.g., chapter XVII of Albert Messiah, Quantum Mechanics, volume II, North-Holland, Amsterdam, 1986.

    Google Scholar 

  40. See, e.g., H. Haken, Quantum Field Theory of Solids, North-Holland, Amsterdam, 1976.

    Google Scholar 

  41. See, e.g., Appendix II of C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, volume II, John Wiley and Sons, New York, 1976.

    Google Scholar 

  42. Z.H. Levine and D.C. Allan, Phys. Rev. Lett. 63, 1719 (1989).

    Article  CAS  Google Scholar 

  43. J.L.P. Hughes and J.E. Sipe, Phys. Rev. B53, 10751 (1996).

    Google Scholar 

  44. R. Atanasov, F. Bassani, and V.M. Agranovich, Phys. Rev. B50, 7809 (1994).

    Google Scholar 

  45. A.L. Smirl, T.F. Boggess, B.S. Wherrett, G. P. Perryman, and A. Miller, Phys. Rev. Lett. 49, 933–936 (1982).

    Article  CAS  Google Scholar 

  46. J.L. Oudar, A. Migus, D. Hulin, G. Grillon, J. Etchepare and A. Antonetti, Phys. Rev. Lett. 53, 384–387 (1984).

    Article  CAS  Google Scholar 

  47. See, e.g., R.W. Boyd, Nonlinear Optics, Academic Press, San Diego, 1992.

    Google Scholar 

  48. J.E. Sipe and E. Ghahramani, Phys. Rev. B48, 11705 (1993).

    Google Scholar 

  49. C. Aversa and J.E. Sipe, Phys. Rev. B52, 14636 (1995).

    Google Scholar 

  50. C. Aversa and J.E. Sipe, IEEE J. Quantum Electronics 32, 1570 (1996).

    Article  Google Scholar 

  51. See E. Ghahramani, D.J. Moss, and J.E. Sipe, Phys. Rev. B43, 8990 (1991) and references cited therein.

    Google Scholar 

  52. J. Khurgin, J. of Nonlinear Opt. Phys. and Materials 4, 163–169 (1995).

    Article  Google Scholar 

  53. J. Khurgin, J. Opt. Soc. Am.B 11, 2492–2501 (1994).

    Article  CAS  Google Scholar 

  54. J.L.P. Hughes, Y. Wang, and J.E. Sipe, Phys. Rev. B55, 13530–13640 (1997).

    Google Scholar 

  55. Boris I. Sturman and Vladimir M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, Gordon and Breach Science Publishers, Philadelphia, 1992.

    Google Scholar 

  56. J.E. Sipe and A.I. Shkrebtii, Phys. Rev. B61, 5337–5352 (2000).

    Google Scholar 

  57. J.M. Fraser, A.I. Shkrebtii, J.E. Sipe, and H.M. van Driel, Phys. Rev. Lett. 83, 4192–4195 (1999).

    Article  CAS  Google Scholar 

  58. This effect was not present in the two-color interference experiments on GaAs Y. Kostoulas, R. Atanasov, J.L.P. Hughes, J.E. Sipe, and H.M. van Driel, Phys. Rev. Lett. 78, 306–309 (1997) [19]}, [20], which lack center of inversion symmetry, because the polarizations chosen for the beams at ω and 2ω led to a vanishing \( \dot n^x \).

    Article  Google Scholar 

  59. J.E. Sipe et al., unpublished.

    Google Scholar 

  60. J.H. Collet, Phys. Rev. B, 47, 10279–10291 (1993).

    Article  CAS  Google Scholar 

  61. A. Leitenstorfer, C. Fürst, A. Laubereau, and W. Kaiser, Phys. Rev. Lett. 76, 1545–1548 (1996).

    Article  CAS  Google Scholar 

  62. D.W. Snoke, W.W. Rühle, Y.-C. Lu and E. Bauser, Phys. Rev. Lett. 68, 990–993 (1992).

    Article  CAS  Google Scholar 

  63. S. S. Prabhu, S. E. Ralph, M. R. Melloch, E. S. Harmon, Appl. Phys. Lett. 70, 2419–2421 (1997).

    Article  CAS  Google Scholar 

  64. J.S. Blakemore, J. Appl. Phys. 53, R123–R181 (1982).

    Article  CAS  Google Scholar 

  65. X.-Q. Zhou, H.M. van Driel, Z. Gogolak, W.W. Rühle, and K. Ploog, Appl. Phys. Lett 61, 3020–3022 (1992).

    Article  CAS  Google Scholar 

  66. E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N. Otsuka, and C.L. Chang, Appl. Phys. Lett. 63, 2248–2250 (1993).

    Article  CAS  Google Scholar 

  67. This is based on scaling rules as outlined in, e.g., B.S. Wherret, J. Opt. Soc. Am. B1, 67–72 (1984).

    Article  Google Scholar 

  68. E.D. Pallik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985), p. 439. Note: The optical parameters of LT-GaAs and GaAs do not differ significantly for photons with energy > 100 meV above the bandgap.

    Google Scholar 

  69. A.E. Siegman, Lasers (University Science Books, Mill Valley CA, 1986), p. 332.

    Google Scholar 

  70. Q. Fu, G. Mak and H.M. van Driel Optics Lett. 17, 1006–1008 (1992).

    Article  CAS  Google Scholar 

  71. L. Qian, S.D. Benjamin, and P.W.E. Smith, Opt. Commun., 127, 73–78 (1996).

    Article  CAS  Google Scholar 

  72. A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zeldovich, Optical and Quantum Electronics, 23, 1055–1060 (1991).

    Article  CAS  Google Scholar 

  73. Y. Yahkir and H.M. van Driel, J. Appl. Optics 38, 2554–2559 (1999).

    Article  Google Scholar 

  74. P.C. Becker, H.L. Fragnito, C.H. Brito Cruz, R.L. Fork, J.E. Cunningham, J.E. Henry and C.V. Shank, Phys. Rev. Lett. 61, 1647 (1988).

    Article  CAS  Google Scholar 

  75. D. Cote, J.M. Fraser, M. De Camp, P. Bucksbaum, and H.M. van Driel, Appl. Phys. Lett. 75, 3959–3962 (1999).

    Article  CAS  Google Scholar 

  76. J.M. Fraser, A. Haché, A.I. Shkebtii, J.E. Sipe and H.M. van Driel, Appl. Phys. Lett. 74, 2014–2016 (1999).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Driel, H.M., Sipe, J.E. (2001). Coherence Control of Photocurrents in Semiconductors. In: Tsen, KT. (eds) Ultrafast Phenomena in Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0203-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0203-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6562-7

  • Online ISBN: 978-1-4613-0203-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics