The Last 100 Days of the Bieberbach Conjecture

  • O. M. Fomenko
  • G. V. Kuz’mina


In mathematics there exist many beautiful hypotheses, but few of them have had profound influence on the development of the subject in the large. One of these hypotheses, however, is the Bieberbach conjecture.


Univalent Function Classical Version Hypergeometric Series Geometric Function Theory Koebe Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goluzin, G. M. Geometric Theory of Functions of a Complex Variable. Moscow, 1952; German trans., Deutsher Verlag: Berlin, 1957; 2nd ed., Izdat. “Nauka”: Moscow, 1966; English trans., Amer. Math. Soc, 1969.Google Scholar
  2. 2.
    Jenkins, J. A. Univalent Functions and Conformal Mapping. 2nd ed. Springer-Verlag: Berlin, 1965.Google Scholar
  3. 3.
    Lebedev, N. A. The Area Principle in the Theory of Univalent Functions. Izdat. “Nauka”: Moscow, 1975 (in Russian).MATHGoogle Scholar
  4. 4.
    Bieberbach, L. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S.-B. Preuss. Akad. Wiss., 1916, 940–955.Google Scholar
  5. 5.
    Löwner, K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann., 89 (1923), 103–121.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Pommerenke, Ch. Univalent functions (with a chapter on quadratic differentials by G. Jensen). Vandenhoeck and Ruprecht: Göttingen, 1975.Google Scholar
  7. 7.
    Düren, P. L. Univalent functions. Springer-Verlag, 1983.Google Scholar
  8. 8.
    Duren, P. L. Coefficients of univalent functions. Bull. Amer. Math. Soc., 83 (1977), 891–911.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    FitzGerald, C. H. The Bieberbach Conjecture: Retrospective. Notices Amer. Math. Soc., (1985), 2–6.Google Scholar
  10. 10.
    Pommerenke, Ch. The Bieberbach Conjecture. The Math. Intelligencer, 7, no. 1 (1985), Springer-Verlag.Google Scholar
  11. 11.
    Grunsky, H. Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Z., 45 (1939), 29–61.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Robertson, M. S. A remark on the odd schlicht functions. Bull. Amer. Math. Soc., 42 (1936), 366–370.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lebedev, N. A. and Milin, I. M. An inequality. Vestnik Leningrad. Univ., 20 (1965), no. 19, 157–158 (in Russian).MathSciNetMATHGoogle Scholar
  14. 14.
    Milin, I. M. On the coefficients of univalent functions. Dokl. Akad. Nauk SSSR, 176 (1967), 1015–1018 (in Russian) = Soviet Math. Dokl., 8 (1967), 1255–1258.MathSciNetGoogle Scholar
  15. 15.
    Milin, I. M. Univalent Functions and Orthonormal Systems. Izdat. “Nauka”: Moscow, 1971 (in Russian); English trans., Amer. Math. Soc., Providence, R.I., 1977.MATHGoogle Scholar
  16. 16.
    de Branges, L. A proof of the Bieberbach Conjecture. Steklov Math. Inst. Leningrad Department, LOMI Preprints, E-5-84 (1984).Google Scholar
  17. 17.
    Askey, R. and Gasper, G. Positive Jacobi polynomial sums, II. Amer. J. Math., 98 (1976), 709–731.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    de Branges, L. A proof of the Bieberbach Conjecture. Acta Math., 154 (1985), 137–152.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    FitzGerald, C. H. and Pommerenke, Ch. The de Branges theorem on univalent functions. Trans. Amer. Math. Soc., 290 (1985), 683–690.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • O. M. Fomenko
  • G. V. Kuz’mina

There are no affiliations available

Personalised recommendations