Artin’s Conjecture for Primitive Roots

  • M. Ram Murty


In his preface to Diophantische Approximationen, Hermann Minkowski expressed the conviction that the “deepest interrelationships in analysis are of an arithmetical nature.” Gauss described one such remarkable interrelationship in articles 315–317 of his Disquisitiones Arithmeticae. There, he asked why the decimal fraction of 1/7 has period length 6:
$$ x^2 + y^2 = 5 $$
whereas 1/11 has period length of only 2:
$$ x - y = 1 $$
Why does 1/99007599, when written as a binary fraction (that is, expanded in base 2), have a period of nearly 50 million 0s and 1s? To answer these questions, Gauss introduced the concept of a primitive root.


Elliptic Curf Primitive Root Riemann Hypothesis Sieve Method Imaginary Quadratic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin, Collected Papers, Reading, MA: Addison-Wesley (1965).MATHCrossRefGoogle Scholar
  2. 2.
    E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérique 18 (1974).Google Scholar
  3. 3.
    E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203–251.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    E. Fouvry and H. Iwaniec, Primes in arithmetic progressions, Acta Arith. 42 (1983), 197–218.MathSciNetMATHGoogle Scholar
  5. 5.
    E. Fouvry, Autour du théorème de Bombieri-Vinogradov, Acta Math. 152 (1984), 219–244.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    R. Gupta and M. Ram Murty, A remark on Artin’s conjecture, Inventiones Math. 78 (1984), 127–130.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    R. Gupta and M. Ram Murty, Primitive points on elliptic curves, Compositio Math. 58 (1986), 13–44.MathSciNetMATHGoogle Scholar
  8. 8.
    R. Gupta, V. Kumar Murty, and M. Ram Murty, The Euclidean algorithm for S integers, CNS Conference Proceedings, Vol 7 (1985), 189–202.Google Scholar
  9. 9.
    D. R. Heath-Brown, Artin’s conjecture for primitive roots, Quart. J. Math. Oxford (2)37 (1986), 27–38.MathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Hooley, On Artin’s conjecture, J. reine angew. Math. 226 (1967), 209–220.Google Scholar
  11. 11.
    H. Iwaniec, Rosser’s sieve, ActaArith. 36 (1980), 171–202.MathSciNetMATHGoogle Scholar
  12. 12.
    H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307–320.MathSciNetMATHGoogle Scholar
  13. 13.
    H. Iwaniec, Primes of the type ∅(x, y) + A, where ∅ is a quadratic form, Acta Arith. 21 (1972), 203–224.MathSciNetMATHGoogle Scholar
  14. 14.
    S. Lang and H. Trotter, Primitive points on elliptic curves, Bulletin Amer. Math. Soc. 83 (1977), 289–292.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    C. R. Matthews, Counting points modulo p for some finitely generated subgroups of algebraic groups, Bulletin London Math. Soc. 14 (1982), 149–154.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    M. Ram Murty and S. Srinivasan, Some remarks on Artins conjecture, Canadian Math. Bull. 30 (1987), 80–85.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. Ram Murty

There are no affiliations available

Personalised recommendations