Thorvald Nicolai Thiele

b. 24 December 1838 d. 26 September 1910
  • Ragnar Norberg


A man of many talents, Professor (at the Copenhagen Observatory) T.N. Thiele was a leading personality in astronomy, numerical analysis, actuarial science, and mathematical statistics. He invented cumulants and discovered Thiele’s differential equation.


Life Insurance Gifted Child Actuarial Science Differential Equation General Premium Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, A. (1939). Mathematik der Lebensversicherung. Verlag von Julius Springer-Verlag, Wien.CrossRefGoogle Scholar
  2. Gram, J.P. (1910). Professor Thiele som aktuar. Dansk Forsikringsårbog 1910, 26–37.Google Scholar
  3. Hald, A. (1981). T.N. Thiele’s contributions to statistics. Internatonal Statistical Review, 49, 1–20.MathSciNetMATHCrossRefGoogle Scholar
  4. Hald, A. (1998). Preprint No. 2. Dept. of Theoretical Statistics. Univ. of Copenhagen.Google Scholar
  5. Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. Wiley, New York.MATHGoogle Scholar
  6. Hansen, C. (1946). Om Thiele’s Differentialligning for Prcemiereserver i Livsforsikring. H. Hagerups Forlag, Copenhagen.Google Scholar
  7. Hoem, J.M. (1980). Who first fitted a mortality formula by least squares? Blätter der DGVM, 14, 459–460.CrossRefGoogle Scholar
  8. Hoem, J.M. (1983). The reticent trio: Some little-known early discoveries in insurance mathematics by L.H.F. Oppermann, T.N. Thiele, and J.P. Gram. International Statistical Review, 51, 213–221.MATHCrossRefGoogle Scholar
  9. Hoem, J.M. (1988). The versatility of the Markov chain as a tool in the mathematics of life insurance. Transactions of the XXIII Congress of Actuaries, Vol. R, 171–202.Google Scholar
  10. Johnson, N.L. and Kotz, S. (eds.) (1997). Leading Personalities in Statistical Science. Wiley, New York.Google Scholar
  11. Jorgensen, N.R. (1913). Grundzüge einer Theorie der Lebensversicherung. Fischer, Jena.Google Scholar
  12. Nielsen, N. (1912). Matematiken i Danmark 1528–1928. Gyldendalske Boghandel Nordisk Forlag, Copenhagen.Google Scholar
  13. Norberg, R. (1991). Reserves in life and pension insurance. Scandinavian Actuarial Journal, 1991, 1–22.MathSciNetCrossRefGoogle Scholar
  14. Norberg, R. (1992). Hattendorff’s theorem and Thiele’s differential equation generalized. Scandinavian Actuarial Journal, 1992, 2–14.MathSciNetMATHCrossRefGoogle Scholar
  15. Schweder, T. (1980). Scandinavian statistics, some early lines of development. Scandinavian Journal of Statistics, 7, 113–129.MathSciNetMATHGoogle Scholar
  16. Thiele, T.N. (1889). Forelcesninger over Almindelig lagttagelseslcere. Reitzel, Copenhagen.Google Scholar
  17. Thiele, T.N. (1903). Theory of Observations, Layton, London. (Reprinted in Annals of Mathematical Statistics, 2, 165–308 (1931).)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ragnar Norberg

There are no affiliations available

Personalised recommendations