The Growing Family of Rasch Models

  • Jürgen Rost
Part of the Lecture Notes in Statistics book series (LNS, volume 157)


A family of Rasch models is defined in terms of the prominent properties of all Rasch models, that is, separability, sufficiency, specific objectivity, and latent additivity. It is argued that concepts such as item homogeneity, person homogeneity, and unidimensionality do not hold for all generalizations of the Rasch model (RM). Four directions of generalizing the model are discussed: the multidimensional, the ordinal polytomous, the linear logistic, and the mixture distribution generalization. A hierarchical system of generalized Rasch models is presented. Four out of these eight models are discussed in the literature and can be applied by means of reliable computer software.


Item Response Theory Latent Trait Item Parameter Latent Class Model Partial Credit Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R.J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.CrossRefGoogle Scholar
  2. Andersen, E.B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 69–81.MathSciNetMATHCrossRefGoogle Scholar
  3. Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573.MATHCrossRefGoogle Scholar
  4. Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47, 105–113.CrossRefGoogle Scholar
  5. Andrich, D. (1991). [Review of the book Latent trait and latent class models]. Psychometrika, 56, 155–168.CrossRefGoogle Scholar
  6. Andrich, D. (1995). Models for measurement, precision, and the nondichotomization of graded responses. Psychometrika, 60, 7–26.MATHCrossRefGoogle Scholar
  7. Bartholomew, D.J. (1987). Latent variable models and factor analysis. London: Griffin.MATHGoogle Scholar
  8. Bishop, Y.M.M., Fienberg, S.E., & Holland, P.W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.MATHGoogle Scholar
  9. Carstensen, C., & Rost, J. (1998). MULTIRA: Ein Programmsystem für mehrdimensionale Rasch-Modelle [MULTIRA: A program system for multidimensional Rasch models]. Kiel: IPN.Google Scholar
  10. Cox, D.R. (1970). The analysis of binary data. Methuen: London.MATHGoogle Scholar
  11. Fischer, G.H. (1972). A measurement model for the effects of mass-media. Acta Psychologica, 36, 207–220.CrossRefGoogle Scholar
  12. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 31, 359–374.CrossRefGoogle Scholar
  13. Fischer, G. (1974). Einführung in die Theorie psychologischer Tests: Grundlagen und Anwendungen [Introduction to mental test theory: Foundations and applications]. Bern: Huber.MATHGoogle Scholar
  14. Fischer, G.H. (1988). Spezifische Objektivität [Specific objectivity]. In K.D. Kubinger (Hrsg.), Moderne Testtheorie (pp. 87–111). Weinheim: Beltz.Google Scholar
  15. Fischer, G.H. (1995). The linear logistic test model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 131–155). New York: Springer-Verlag.Google Scholar
  16. Fischer, G.H., & Parzer, P (1991). An extension of the rating scale model with an application to the measurement of treatment effects. Psychometrika, 56, 637–651.MATHCrossRefGoogle Scholar
  17. Fischer, G.H., & Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 59, 177–192.MATHCrossRefGoogle Scholar
  18. Fischer, G.H., & Ponocny-Seliger, E. (1998). LPCM-WIN: For structural Rasch modeling [Software manual]. Groningen: ProGAMMA.Google Scholar
  19. Formann, A.K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87–111.MathSciNetMATHCrossRefGoogle Scholar
  20. Formann, A.K. (1989). Constrained latent class models: Some further applications. British Journal of Mathematical and Statistical Psychology, 42, 37–54.MathSciNetMATHCrossRefGoogle Scholar
  21. Haberman, S.J. (1988). A stabilized Newton-Raphson algorithm for loglinear models for frequency tables derived by indirect observation. In C.C. Clogg (Ed.), Sociological methodology 1988 (pp. 193–211). Washington, DC: American Sociological Association.Google Scholar
  22. Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693.MATHCrossRefGoogle Scholar
  23. Hicks, L.E. (1970). Some properties of ipsative, normative, and forcedchoice normative measures. Psychological Bulletin, 74, 167–184.CrossRefGoogle Scholar
  24. Hoijtink, H., & Rooks, G. (1999). Confirmatory factor analysis of items with a dichotomous response format using the multidimensional Rasch model. Psychological Methods, 4, 300–314.CrossRefGoogle Scholar
  25. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.MATHCrossRefGoogle Scholar
  26. Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 149–176.MATHCrossRefGoogle Scholar
  27. Klauer, K.C., & Sydow, H. (1992). Interindividuelle Unterschiede in der Lernfä higkeit: Zur Analyse von Lernprozessen bei Kurzzeitlerntests [Interindividual differences in learning ability: Analyzing learning by means of short-term learning tests]. Zeitschrift für Differentielle und Diagnostische Psychologie, 13, 175–190.Google Scholar
  28. Klauer, K.C., & Sydow, H. (2001). Modeling learning in short-term learning tests. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 69–87). New York: Springer-Verlag.CrossRefGoogle Scholar
  29. Langeheine, R., & Rost, J. (1988). Latent trait and latent class models. New York: Plenum.Google Scholar
  30. Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.MATHGoogle Scholar
  31. Linacre, J.M. (1989). Many-faceted Rasch measurement. Chicago: MESA Press.Google Scholar
  32. Lindsay, B., Clogg, C.C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.MathSciNetMATHCrossRefGoogle Scholar
  33. Luce, R.D., & Tukey, J.W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement. Journal of Mathematical Psychology, 1, 1–27.MATHCrossRefGoogle Scholar
  34. Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 41, 149–174.CrossRefGoogle Scholar
  35. Meiser, T. (1996). Loglinear Rasch models for the analysis of stability and change. Psychometrika, 61, 629–645.MATHCrossRefGoogle Scholar
  36. Micko, H.-C. (1970). Eine Verallgemeinerung des Meßmodells von Rasch mit einer Anwendung auf die Psychophysik der Reaktionen [A generalization of Rasch’s measurement model with an application to the psychophysics of reactions]. Psychologische Beiträge, 12, 4–22.Google Scholar
  37. Mislevy, R.J., & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195–215.CrossRefGoogle Scholar
  38. Mokken, R.J. (1971). A theory and procedure of scale analysis: With applications in political research. The Hague: Mouton.CrossRefGoogle Scholar
  39. Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 3–14). New York: Springer-Verlag.Google Scholar
  40. Müller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165–181.CrossRefGoogle Scholar
  41. Muraki, E., & Carlson, J.E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73–90.CrossRefGoogle Scholar
  42. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research. (Expanded edition, 1980. Chicago: The University of Chicago Press.)Google Scholar
  43. Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Theory of Probability (Vol. IV, pp. 321–333). Berkeley: University of California Press.Google Scholar
  44. Roskam, E.E., & Jansen, P.G.W. (1989). Conditions for Rasch-dichotomizability of the unidimensional polytomous Rasch model. Psychometrika, 54, 317–333.CrossRefGoogle Scholar
  45. Rost, J. (1988). Measuring attitudes with a threshold model drawing on a traditional scaling concept. Applied Psychological Measurement, 12, 397–409.CrossRefGoogle Scholar
  46. Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.CrossRefGoogle Scholar
  47. Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75–92.CrossRefGoogle Scholar
  48. Rost, J. (1996). Lehrbuch Testtheorie, Testkonstruktion [Textbook test theory, test construction]. Bern: Huber.Google Scholar
  49. Rost, J. (1999). Was ist aus dem Rasch-Modell geworden? [Where has the Rasch model gone?] Psychologische Rundschau, 50, 140–156.CrossRefGoogle Scholar
  50. Rost, J., & Carstensen, C. (in press). Multidimensional Rasch measurement via item component models and faceted designs. Applied Psychological Measurement.Google Scholar
  51. Rost, J., & Langeheine, R. (1997). A guide through latent structure models for categorical data. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 13–37). Münster: Waxmann.Google Scholar
  52. Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one dimension. Psychometrika, 48, 259–267.MATHCrossRefGoogle Scholar
  53. Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23–30.MathSciNetMATHGoogle Scholar
  54. Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.MATHCrossRefGoogle Scholar
  55. Verhelst, N.D., & Glas, C.A.W. (1995a). Dynamic generalization of the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch Models: Foundations, recent developments, and applications (pp. 181–201). New York: Springer-Verlag.Google Scholar
  56. Verhelst, N.D., & Glas, C.A.W. (1995b).The one parameter logistic model. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 215–237). New York: Springer-Verlag.Google Scholar
  57. Vermunt, J.K. (1996). LEM: A general program for the analysis of categorical data [Computer software]. Tilburg University, Department of Methodology, The Netherlands.Google Scholar
  58. Von Davier, M. (1995). Mixtures of polytomous Rasch models and latent class models for ordinal variables. In F. Faulbaum & W. Bandilla (Eds.), Soß stat 95—Advances in Statistical Software 5. Stuttgart: Lucius & Lucius.Google Scholar
  59. Von Davier, M. (1998). WINMIRA: A WINDOWS program for mixed Rasch models [Computer software]. Kiel: IPN.Google Scholar
  60. Wilson, M., & Wang, W. (1995). Complex composites: Issues that arise in combining different modes of assessment. Applied Psychological Measurement, 19, 51–71.CrossRefGoogle Scholar
  61. Wright, B.D., & Masters, G.N. (1982). Rating scale analysis: Rasch measurement. Chicago: Mesa Press.Google Scholar
  62. Wu, M., Adams, R.J., & Wilson, M. (1997). ConQuest—Generalised item response modelling software (Draft Release 2) [Software manual]. Camberwell: Australian Council for Educational Research.Google Scholar
  63. Yamamoto, K. (1989). A hybrid model of IRT and latent class models (ETS Research Report RR-89-41). Princeton, NJ: Educational Testing Service.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jürgen Rost
    • 1
  1. 1.Institute for Science EducationUniversity of KielKielFederal Republic of Germany

Personalised recommendations