Skip to main content

Bayes/EB Ranking, Histogram and Parameter Estimation: Issues and Research Agenda

  • Chapter
Empirical Bayes and Likelihood Inference

Part of the book series: Lecture Notes in Statistics ((LNS,volume 148))

Abstract

We propose that methods of inference should be linked to an inferential goal via a loss function. For example, if unit-specific parameters are the feature of interest, under squared error loss their posterior means are the optimal estimates. If unit-specific ranks are the target feature (for example to be used in “league tables“, ranking schools, hospitals, physicians or geographic regions), the conditional expected ranks or a discretized version of them are optimal. If the feature of interest is the histogram or empirical distribution function of the unit-specific parameters then the conditional expected edf or a discretized version of it is optimal.

No single set of estimates can simultaneously optimize the three inferential goals. However, in many policy settings communication and credibility will be enhanced by reporting a set of values with good performance for all three goals. This requirement leads to development of “triple-goal” estimates: those producing a histogram that is a good estimate of the parameter histogram, with induced ranks that are good estimates of the parameter ranks and with good performance in estimating unit-specific parameters. Using mathematical and simulation-based analyses, we compare three candidate triple-goal estimates for the two-stage hierarchical model: posterior means, constrained Bayes estimates and a new approach which optimizes estimation of the edf and the ranks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Besag, J., J.C. York, and A. Molliè (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43, 1–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlin, B.P. and T.A. Louis (2000). Bayes and Empirical Bayes Methods for Data Analysis. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Conlon, E.M. and T.A. Louis (1999). Addressing multiple goals in evaluating region-specific risk using Bayesian methods. In A. Lawson, A. Biggeri, D. Böhning, E. Lesaffre, J.-F. Viel, and R. Bertollini (Eds.), Disease Mapping and Risk Assessment for Public Health, Chapter 3, pp. 31–47. New York: Wiley.

    Google Scholar 

  • Escobar, M.D. (1994). Estimating normal means with a Dirichlet process prior. J. Amer. Statist. Assoc. 89, 268–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, M. (1992). Constrained Bayes estimates with applications. J. Amer. Statist. Assoc. 87, 533–540.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (Eds.) (1996). Markov Chain Monte Carlo in Practice. London: Chapman and Hall.

    MATH  Google Scholar 

  • International Agency for Research on Cancer (1985). Scottish Cancer Atlas, Volume 72 of IARC Scientific Publications. Lyon, France.

    Google Scholar 

  • Laird, N.M. and T.A. Louis (1989). Bayes and empirical Bayes ranking methods. J. Edu. Statist. 14, 29–46.

    Article  Google Scholar 

  • Lindsay, B.G. (1983). The geometry of mixture likelihoods: a general theory. Ann. Statist. 11, 86–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Louis, T.A. (1984). Estimating a population of parameter values using Bayes and empirical Bayes methods. J. Amer. Statist. Assoc. 79, 393–398.

    Article  MathSciNet  Google Scholar 

  • Magder, L.S. and S. Zeger (1996). A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. J. Amer. Statist. Assoc. 912, 1141–1151.

    Article  MathSciNet  Google Scholar 

  • Robbins, H (1983). Some thoughts on empirical Bayes estimation. Ann. Statist. 1, 713–723.

    Article  MathSciNet  Google Scholar 

  • Shen, W. and T.A. Louis (1998). Triple-goal estimates in two-stage, hierarchical models. J. Roy. Statist. Soc. Ser. B 60, 455–471.

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, W. and T.A. Louis (1999). Empirical Bayes estimation via the smoothing by roughening approach. J. Comput. Graph. 8, 800–823.

    MathSciNet  Google Scholar 

  • Spiegelhalter, D.J., A. Thomas, N. Best, and W.R. Gilks (1995). BUGS: Bayesian inference using Gibbs sampling, version 0.50. Technical report, Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge University.

    Google Scholar 

  • Teicher, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32, 244–248.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Louis, T.A. (2001). Bayes/EB Ranking, Histogram and Parameter Estimation: Issues and Research Agenda. In: Ahmed, S.E., Reid, N. (eds) Empirical Bayes and Likelihood Inference. Lecture Notes in Statistics, vol 148. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0141-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0141-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95018-1

  • Online ISBN: 978-1-4613-0141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics