Skip to main content

The Mitotic Cell Cycle

  • Chapter
  • 141k Accesses

Abstract

Proliferating cells go through a regular cycle of events, the mitotic cell cycle, in which the genetic material is duplicated and divided equally between two daughter cells. This is brought about by the duplication of each chromosome to form two closely adjacent sister chromatids, which separate from each other to become two daughter chromosomes. These, along with the other chromosomes of each set, are then packaged into two genetically identical daughter nuclei. The molecular mechanisms underlying the cell cycle are highly conserved in all organisms with a nucleus (eukaryotes). Many of the genes and proteins involved in the human cell cycle have been identified because of their high degree of nucleotide and amino acid sequence similarity to homologous genes and proteins in the more easily studied budding yeast, Saccharomyces cerevisiae, in which the cell cycle is more fully understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi Y, Luke M, Laemmli UK (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64:137–148

    Article  PubMed  CAS  Google Scholar 

  • Bhat MA, Philip AV, Glover DM, et al. (1996) Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell 89:1159–1163

    Google Scholar 

  • Blangy A, Lane HA, d’Hérin P, et al. (1995) Phosphorylation by p34(CDC2) regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Demetrick DJ (1995) Fluorescence in situ hybridization and human cell cycle genes. In: Pagano M (ed) Cell cycle—materials and methods. Springer-Verlag, Berlin, pp 29–45

    Google Scholar 

  • Downes CS, Mullinger AM, Johnson RT, et al. (1991) Inhibitors of topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc Natl Acad Sci USA 88:8895–8899

    Article  PubMed  CAS  Google Scholar 

  • Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12:1871–1883

    Article  PubMed  CAS  Google Scholar 

  • Gerace L, Blobel G (1980) The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19:277–287

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Peters G (1997) Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 68:67–108

    Article  Google Scholar 

  • Hinchcliffe EH, Li C, Thompson EA, et al. (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–854

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Jimenez G, Wells NJ, et al. (1998) PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell 2: 877–885

    Article  PubMed  CAS  Google Scholar 

  • Kajii T, Kawai T, Takumi T, et al. (1998) Mosaic variegated aneuploidy with multiple congenital abnormalities: homozygosity for total premature chromatid separation trait. Am J Med Genet 78:245–249

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, El-Deiry WS, et al. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  • King RW, Peters J-M, Tugendreich S, et al. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81:279–288

    Article  PubMed  CAS  Google Scholar 

  • Koshland D, Strunnikov A (1996) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12:305–333

    Article  PubMed  CAS  Google Scholar 

  • Lammer C, Wagerer S, Safrich R, et al. (1998) The cdc28B phosphatase is essential for the G2/M transition in human cells. J Cell Sci 111:2445–2453

    PubMed  CAS  Google Scholar 

  • Levine A (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Li G, Yen TJ (1994) Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265:394–395

    Article  PubMed  CAS  Google Scholar 

  • Magnagni-Jaulin L, Groisman R, Naguibneva I, et al. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605

    Article  Google Scholar 

  • Marklund U, Larson N, Gradin H, et al. (1996) Oncoprotein 18 is a phosphoprotein-responsive regulator of microtubule dynamics. EMBO J 15:5290–5298

    PubMed  CAS  Google Scholar 

  • Merdes A, Remyar K, Vechio JD, et al. (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458

    Article  PubMed  CAS  Google Scholar 

  • Murray AW (1995) Cyclin ubiquitination: the destructive end of mitosis. Cell 81:149–152

    Article  PubMed  CAS  Google Scholar 

  • Nicklas RB (1997) A tension-sensitive kinase at the kinetochore regulates the onset of mitosis. Science 275:632–637

    Article  PubMed  CAS  Google Scholar 

  • Nislow C, Lombillo VA, Kuriyama R, et al. (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359:543–547

    Article  PubMed  CAS  Google Scholar 

  • Petzelt C, Joswig G, Mincheva A, et al. (1997) The centrosomal protein centrosomin A and the nuclear protein centrosomin B derive from one gene by post-transcriptional processes involving RNA editing. J Cell Sci 110:2573–2578

    PubMed  CAS  Google Scholar 

  • Roussel MF (1998) Key effectors of signal transduction and G1 progression. Adv Cancer Res 74:1–24

    Article  PubMed  CAS  Google Scholar 

  • Sicinski P, Donaher JL, Geng Y, et al. (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal proliferation and oncogenesis. Nature 384: 470–474

    Article  PubMed  CAS  Google Scholar 

  • Sutani T, Yanaguta M (1997) DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388:798–801

    Article  PubMed  CAS  Google Scholar 

  • Tugendreich S, Tomkiel J, Earnshaw W, et al. (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81:261–268

    Article  PubMed  CAS  Google Scholar 

  • Wells AD (1996) The spindle assembly checkpoint: aiming for a perfect mitosis, every time. Trends Cell Biol 6:228–234

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Wong ML, Alberts B, et al. (1995) Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378:578–583

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). The Mitotic Cell Cycle. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics