Skip to main content

Phenotypic Effects of Sex Chromosome Imbalance

  • Chapter
Human Chromosomes
  • 140k Accesses

Abstract

The sex chromosomes show a much wider range of viable aneuploidy than do the autosomes, for several reasons. Each diploid somatic cell has only one active X, and most of the genes on any additional X chromosomes are inactivated. The Y chromosome contains very few genes. Mosaicism, with a normal cell line present, is much more common for sex chromosomes than for autosomes. Figure 19.1 summarizes the known nonmosaic numerical sex chromosome abnormalities. In addition to the examples in this figure, the chromosome constitution XYYYY has been found in a few highly abnormal individuals (Noël et al., 1988)..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanco J, Rubio C, Simon C, et al. (1997) Increased incidence of disomic sperm nuclei in a 47,XYY male assessed by fluorescent in situ hybridization (FISH). Hum Genet 99:413–416

    Article  PubMed  CAS  Google Scholar 

  • Delobel B, Djlelati R, Gabriel-Robez O, et al. (1998) Y-autosome translocation and infertility: usefulness of molecular, cytogenetic and meiotic studies. Hum Genet 102:98–102

    Article  PubMed  CAS  Google Scholar 

  • Gabriel-Robez O, Rumpier Y (1996) The meiotic pairing behavior in human spermatocyte carriers of chromosome anomalies and their repercussions on reproductive fitness. II. Robertsonian and reciprocal translocations. A European study. Ann Génét 39:17–25

    PubMed  CAS  Google Scholar 

  • Geerkens C, Just W, Held KR, et al. (1996) Ullrich-Turner syndrome is not caused by haploinsufficiency of RPS4X. Hum Genet 97:39–44

    Article  PubMed  CAS  Google Scholar 

  • Goodman BK, Shaffer LG, Rutberg J, et al. (1998) Inherited duplication Xq27-qter at Xp22.3 in severely affected males: molecular cytogenetic evaluation and clinical description in three unrelated families. Am J Med Genet 80:377–384

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Michelman HW, Hinney B, et al. (1997) Segregation of sex chromosomes into sperm nuclei in a man with 47,XXY Klinefelter’s karyotype: a FISH analysis. Hum Genet 99:474–477

    Article  PubMed  CAS  Google Scholar 

  • Hinney B, Engel W, Guttenbach M, et al. (1997) Pregnancy after intracytoplas-mic sperm injection with sperm from a man with a 47,XXY Klinefelter’s karyotype. Fertil Steril 68:718–720

    Article  PubMed  CAS  Google Scholar 

  • Jacobs P, Dalton P, James R, et al. (1997) Turner syndrome: a cytogenetic and molecular study. Am J Hum Genet 61:471–483

    CAS  Google Scholar 

  • Ledbetter DH, Ballabio A (1995) Molecular cytogenetics of contiguous gene syndromes: mechanisms and consequences of gene dosage imbalance. In: Scriver C, Beaudet AL, Sly WS, Valle, D (eds) The metabolic and molecular bases of inherited disease, 7th edn, McGraw-Hill, New York, pp 811–839

    Google Scholar 

  • Madan K (1983) Balanced structural changes involving the human X: effect on sexual phenotype. Hum Genet 63:216–221

    Article  PubMed  CAS  Google Scholar 

  • Madariaga ML, Rivera H (1997) Familial inv(X)(p22q22): ovarian dysgenesis in two sisters with del Xq and fertility in one male carrier. Clin Genet 52: 180–183

    Article  PubMed  CAS  Google Scholar 

  • Mathur A, Stekol L, Schatz D, et al. (1991) The parental origin of the single X chromosome in Turner syndrome: lack of correlation with parental age or clinical phenotype. Am J Hum Genet 48:682–686

    PubMed  CAS  Google Scholar 

  • Myles TD, Burd L, McCorquodale MM, et al. (1997) Dandy-Walker malformation in a fetus with pentasomy X (49,XXXXX) prenatally diagnosed by fluorescence in situ hybridization technique. Fetal Diagn Ther 10:333–336

    Article  Google Scholar 

  • Nielsen J, Homma A, Christiansen F, et al. (1977) Women with tetra-X (48,XXXX). Hereditas 85:151–156

    Article  PubMed  CAS  Google Scholar 

  • Noël B, Bénézech M, Bouzon MT, et al. (1988) Un garçon de sept ans 49,XYYYY. Ann Génét 31:111–116

    PubMed  Google Scholar 

  • Ogata T, Matsuo N (1995) Turner syndrome and female sex chromosome aberrations: deduction of the principal factors involved in the development of clinical features. Hum Genet 95:607–629

    Article  PubMed  CAS  Google Scholar 

  • Rao E, Weiss B, Fukami M (1997) Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 16:54–63

    Article  PubMed  CAS  Google Scholar 

  • Shears DJ, Vassal HJ, Goodman FR, et al. (1998) Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet 19:70–73

    Article  PubMed  CAS  Google Scholar 

  • Skuse DH, James RS, Bishop DVM, et al. (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387:705–708

    Article  PubMed  CAS  Google Scholar 

  • Speed RM (1986) Oocyte development in XO foetuses of man and mouse: the possible role of heterologous X-chromosome pairing in germ cell survival. Chromosoma 94:115–124

    Article  PubMed  CAS  Google Scholar 

  • Speed RM (1988) The possible role of meiotic pairing anomalies in the atresia of human fetal oocytes. Hum Genet 78:260–266

    Article  PubMed  CAS  Google Scholar 

  • Speed RM, Chandley AC (1990) Prophase of meiosis in human spermatocytes analysed by EM microspreading in infertile men and their controls and comparisons with human oocytes. Hum Genet 84:547–554

    Article  PubMed  CAS  Google Scholar 

  • Terzoli G, Lalatta F, Lobbiani A, et al. (1992) Fertility in a 47,XXY patient: assessment of biological paternity by deoxyribonucleic acid fingerprinting. Fertil Steril 58:821–822

    PubMed  CAS  Google Scholar 

  • Therman E, Susman B (1990) The similarity of phenotypic effects caused by Xp and Xq deletions in the human female: a hypothesis. Hum Genet 85: 175–183

    PubMed  CAS  Google Scholar 

  • Tuerlings JHAM, France HF de, Hamers A, et al. (1998) Chromosome studies in 1792 males prior to intra-cytoplasmic sperm injection: the Dutch experience. Eur J Hum Genet 6:194–200

    Article  PubMed  CAS  Google Scholar 

  • Welch JP (1985) Clinical aspects of the XYY syndrome. In: Sandberg AA (ed) The Y chromosome, Part B. Clinical aspects of Y chromosome abnormalities. Liss, New York, pp 323–343

    Google Scholar 

  • Zinn AR, Tonk VS, Chen Z, et al. (1998) Evidence for a Turner syndrome locus or loci at Xpl 1.2–p22.1. Am J Hum Genet 63:1757–1766

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, O.J., Therman, E. (2001). Phenotypic Effects of Sex Chromosome Imbalance. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0139-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0139-4_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95046-4

  • Online ISBN: 978-1-4613-0139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics