Skip to main content

Modelling Dictyostelium discoideum Morphogenesis

  • Conference paper
Book cover Mathematical Models for Biological Pattern Formation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((4522,volume 121))

Abstract

Morphogenesis of the social amoebae Dictyostelium discoideum results from the aggregation of individual cells to form a multicellular hemispherical cell mass, the mound. In the mound the cells differentiate into several cell types. These cell types arise initially in random location in the mound, but then sort out from one another to form a slug. In the slug these cell types are arranged in a simple axial pattern. The slug can migrate and under suitable conditions transforms into a fruiting body consisting of a stalk supporting a mass of spores. It is well established that cells aggregate in response to propagating waves of the chemoattractant cAMP. There is increasingly good experimental evidence that the later stages of morphogenesis are also controlled by cAMP wave propagation and Chemotaxis. Here we present a hydrodynamic model to describe Dictyostelium development from early aggregation up to migrating slug. We consider the population of cells as an excitable medium, which supports propagation of waves of the chemoattractant cAMP. To model the chemotactic cell movement we consider the masses of moving cells as a fluid flow. The morphogenesis of this multicellular organism is basically modelled as shape changes occurring in a drop of liquid with a free surface. At the mound stage this liquid consists of two randomly mixed component fluids corresponding to two cell types. Cell sorting can be effectively modelled as the separation of the component fluids driven by differential Chemotaxis. Finally, our model calculations show that migration of the slug can result from chemotactic flows inside the slug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., Early, A., Siegert, F., Weijer, C., and Williams, J. (1994). Patterns of cell movement within the Dictyostelium slug revealed by cell type-specific, surface labeling of living cells. Cell 77, 687–699.

    Article  Google Scholar 

  • Brenner, M. and Thoms, S.D. (1984). Caffeine blocks activation of cyclic AMP synthesis in Dictyostelium discoideum. Dev. Biol. 101, 136–146.

    Article  Google Scholar 

  • Bretschneider, T., Vasiev, B., and Weijer, C. J. (1997). A model for cell movement during Dictyostelium mound formation. Journal of Theoretical Biology 189, pp. 41.

    Article  Google Scholar 

  • Firtel, R.A. (1996). Interacting Signaling Pathways Controlling Multicellular Development in Dictyostelium. Current Opinion in Genetics & Development 6, 545–554.

    Article  Google Scholar 

  • Futrelle, R.P. (1982). Dictyostelium chemotactic response to spatial and temporal gradients. Theories of the limits of chemotactic sensitivity and of pseudochemotaxis. J. Cell. Biochem. 18, 197–212.

    Article  Google Scholar 

  • Futrelle, R.P., Traut, J., and Mckee, W.G. (1982). Cell behavior in Dictyostelium discoideum preaggregation response to localized cAMP pulses. J. Cell Biol. 92, 807–821.

    Article  Google Scholar 

  • Harlow, F.H. and Welch., J.E. (1965). Numerical calculation of time dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189.

    Article  MATH  Google Scholar 

  • Höfer, T. and Maini, P.K. (1997). Streaming instability of slime mold amoebae: An analytical model. Physical Review E 56, 2074–2080.

    Article  Google Scholar 

  • HÖFER, T., Sherratt, J.A., and Maini, P.K. (1995). Dictyostelium-Discoideum — Cellular Self-Organization in an Excitable Biological Medium. Proceedings of the Royal Society of London Series B-Biological Sciences 259, 249–257.

    Article  Google Scholar 

  • Keller, E.F. and Segel, L.A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.

    Article  Google Scholar 

  • Kothe, D.B., R.C. Mjolsness, and Torrey, M.D. (1991). RIPPLE a Computer program for incompressible flows with free surfaces. Los Alamos Natl.Lab.

    Google Scholar 

  • Levine, H. and Reynolds, W. (1991). Streaming instability of aggregating slime mold amoebae. Phys. rev. lett. 66, 2400–2403.

    Article  Google Scholar 

  • Levine, H., Tsimring, L., and Kessler, D. (1997). Computational modeling of mound development in Dictyostelium. Physica D 106, 375–388.

    Article  Google Scholar 

  • Loomis, W.F. (1982). The development of Dictyostelium discoideum. (New York: Ac. Press).

    Google Scholar 

  • Mackay, S.A. (1978). Computer simulation of aggregation in Dictyostelium discoideum. J. Cell Sci. 33, 1–16.

    Google Scholar 

  • Maeda, Y., Inouye, K., and Takeuchi, I. (1997). Dictyostelium; A Model System for Cell and Developmental Biology, 1st Edition (Tokyo: Universal Academy Press).

    Google Scholar 

  • Martiel, J.-L. and Goldbeter, A. (1987). A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52, 807–828.

    Article  Google Scholar 

  • Nanjundiah, V. (1973). Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105.

    Article  Google Scholar 

  • Novak, B. and Seelig, F.F. (1976). Phase-shift model for the aggregation of amoebae: A computer study. J. Theor. Biol. 56, 301–327.

    Article  Google Scholar 

  • Odell, G.M. and Bonner, J.T. (1986). How the Dictyostelium discoideum grex crawls. Phil. Trans. R. Soc. Lond. B 312, 487–525.

    Article  Google Scholar 

  • Parent, C.A. and Devreotes, P.N. (1996). Molecular genetics of signal transduction in Dictyostelium. Annu. Rev. Biochem. 65, 411–440.

    Article  Google Scholar 

  • Press, W.H., Flannely B.P., Teukovsky S.A., and Wetterling W.T. (1988). Numerical Recipes in C (Cambridge: Cambridge University Press).

    MATH  Google Scholar 

  • Rietdorf, J., Siegert, F., and Weijer, C.J. (1996). Analysis of Optical-Density Wave-Propagation and Cell-Movement During Mound Formation in Dictyostelium-Discoideum. Developmental Biology 177, 427–438.

    Article  Google Scholar 

  • Savill, N.J. and Hogeweg, P. (1997). Modelling morphogenesis: From single cells to crawling slugs. Journal of Theoretical Biology 184, 229–235.

    Article  Google Scholar 

  • Siegert, F. and Weijer, C. (1989). Digital image processing of optical density wave propagation in Dictyostelium discoideum and analysis of the effects of caffeine and ammonia. J. Cell Sci. 93, 325–335.

    Google Scholar 

  • Siegert, F. and Weijer, C.J. (1992). Three-dimensional scroll waves organize Dictyostelium slugs. Proc. Natl. Acad. Sci. USA 89, 6433–6437.

    Article  Google Scholar 

  • Siegert, F., Weijer, C.J., Nomura, A., and Miike, H. (1994). A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development. J. Cell Sci. 107, 97–104.

    Google Scholar 

  • Tang, Y.H. and Othmer, H.G. (1995). Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B 349, 179–195.

    Article  Google Scholar 

  • Tang, Y.H. and Othmer, H.G. (1994). A G protein-based model of adaptation in Dictyostelium discoideum. Math. Biosci. 120, 25–76.

    Article  MATH  Google Scholar 

  • Van Oss, C., Panfilov, A.V., Hogeweg, P., Siegert, F., and Weijer, C.J. (1996). Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum. J. Theor. Biol. 181, 203–213.

    Article  Google Scholar 

  • Varnum, B., Edwards, K.B., and Soll, D.R. (1986). The developmental regulation of single-cell motility in Dictyostelium discoideum. Dev. Biol. 113, 218–227.

    Article  Google Scholar 

  • Varnum-Finney, B., Schroeder, N.A., and Soll, D.R. (1988). Adaptation in the motility response to cAMP in Dictyostelium discoideum. Cell Motil. Cytoskel. 9, 9–16.

    Article  Google Scholar 

  • Vasiev, B., Siegert, F., and Weijer, C.J. (1997). A hydrodynamic model for Dictyostelium discoideum mound formation. Journal of Theoretical Biology 184, pp. 441.

    Article  Google Scholar 

  • Vasiev, B. and Weijer, C. (1999). Modeling Chemotactic Cell Sorting During Dictyostelium Discoideum Mound Formation. Biophysical J. 76, 595–605.

    Article  Google Scholar 

  • Vasiev, B.N., Hogeweg, P., and Panfilov, A.V. (1994). Simulation of Dictyostelium-Discoideum Aggregation Via Reaction-Diffusion Model. Physical Review Letters 73, 3173–3176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Vasiev, B., Weijer, C.J. (2001). Modelling Dictyostelium discoideum Morphogenesis. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics