Skip to main content

Models for Pigment Pattern Formation in the Skin of Fishes

  • Conference paper
Mathematical Models for Biological Pattern Formation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((4522,volume 121))

Abstract

The colours and patterns of the skin provides a fascinating system used for the study of pattern formation in experimental and theoretical research alike. In this article, a brief review of recent work on the pigmentation of the skin is presented. A mathematical model is shown to be able to capture many features associated with the evolving colour patterns on juveniles belonging to the genus of marine angelfish, Pomacanthus. Different forms of growth lead to very different patterning phenomena. The development of computational tools which can accurately reflect the geometry and growth of the real system will allow studies of the relationship between growth and patterning in species such as Pomacanthus or zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arcuri, P. & Murray, J.D., 1986. Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol., 24, 141–165.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagnara, J.T. & Hadley, M.E., 1973. Chromatophores and Color Change. Eaglewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  3. Bagnara, J.T., Matsumoto, J., Ferris, W., Frost, S.K., Turner, W.A., Tchen, T.T., & Taylor, J.D., 1979. Common origin of pigment cells. Science, 182, 1034–1035.

    Article  Google Scholar 

  4. Bard, J.B.L., 1981. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol, 93, 363–385.

    Article  MathSciNet  Google Scholar 

  5. Baynash, A. Greenstein, Hosoda, K., Giaid, A., Richardson, J.A., Emoto, N., Hammer, R.E., & Yanagisawa, M., 1994. Interaction of Endothelin-3 with Endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell, 79, 1277–1285.

    Article  Google Scholar 

  6. Blume-Jensen, P., Claesson-Welsh, L., Siegbahn, A., Zsebo, K.M, Westermark, B., & Heldin., C.I., 1991. Activation of the human c-kit product by the ligand induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J., 10, 4121–4128.

    Google Scholar 

  7. Castets, V., Dulos, E., Boissonade, J., & Kepper, P. De., 1990. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett., 64, 2953–2956.

    Article  Google Scholar 

  8. Crampin, E., Gaffney, E., & Maini, P.K., submitted.

    Google Scholar 

  9. Dakin, N., 1992. The Macmillan book of the marine aquarium. New York: Macmillan Publishing Company.

    Google Scholar 

  10. Dillon, R., & Othmer, H.G., 1999. A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud. To appear in J. Theor. Biol.

    Google Scholar 

  11. Douarin, N.M. Le., 1982. The Neural Crest. Cambridge: CUP.

    Google Scholar 

  12. Epperlein, H.-H. & Löfberg, J., 1990. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum. Adv. Anat. Embrol. Cell. Biol., 118, 1–101.

    Article  Google Scholar 

  13. Erickson, C.A., 1993. From the crest to the periphery: Control of pigment cell migration and lineage segregation. Pigment Cell Res., 6, 336–347.

    Article  Google Scholar 

  14. Ermentrout, B., 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. Roy. Soc. Lond. A., 434, 413–417.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fraser-Brunner, A., 1933. A revision of the Chaetodont fishes of the subfamily Pomacanthinae. Proc. Zool. Soc., 36, 543–596.

    Google Scholar 

  16. Fraser-Brunner, A., 1951. Pattern development in the chaetodont fish Pomacanthus annularis (Bloch), with a note on the status of Euxiphipops. Copeia., 1, 88–89.

    Article  Google Scholar 

  17. Fricke, H.W., 1980. Juvenile-adult colour patterns and coexistence in the territorial coral reef fish Pomacanthus imperator. Marine Ecology, 1, 133–141.

    Article  Google Scholar 

  18. Fujii, R., 1993a. Cytophysiology of fish chromatophores. Int. Rev. Cytol., 143, 191.

    Article  Google Scholar 

  19. Fujii, R., 1993b. The Physiology of Fishes. Marine Science Series. Boca Raton, Ann Arbor, London, Tokyo: CRC press. Chap. Coloration and Chromatophores, pp. 535–562.

    Google Scholar 

  20. Fujii, R., Kasuwaka, H., Miyaji, K., & Oshima, N., 1989. Mechanism of skin coloration and its changes in the blue-green damselfish. Zool. Sci., 6, 477–486.

    Google Scholar 

  21. Galli, S.J., Zsebo, K.M., & Geissler, E.N., 1993. The kit ligand, Stem cell factor. Advances Immunol., 55, 1–96.

    Article  Google Scholar 

  22. Geissler, E.N., Ryan, M.A., & Housman, D.E., 1988. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell, 55, 185–192.

    Article  Google Scholar 

  23. Gilbert, S.F., 1997. Developmental Biology. Fifth edn. Sinauer Associates.

    Google Scholar 

  24. Halaban, R., Ghosh, S., & Baird, S., 1987. bFGF is the putative natural growth factor for human melanovytes. In Vitro, 23, 47–52.

    Google Scholar 

  25. Horikawa, T., Norris, D.A., Yohn, J.J., Zekman, T., & Morelli, J.B. Travers J.G., 1995. Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J. Invest. Derm., 104, 256–259.

    Article  Google Scholar 

  26. Jensen, O., Mesekilded, E., Borckmans, P., & Dewel, G., 1996. Computersimulation of Turing structures in the Chlorite-Iodide-Malonic acid system. Phys. Scripta., 53, 243–251.

    Article  Google Scholar 

  27. Kasuwaka, H., Oshima, N., & Fujii, R., 1987. Mechanism of light reflection in blue damselfish motile iridophores. Zool. Sci., 4, 243–257.

    Google Scholar 

  28. Kelley, S., 1995. Pigmentation, squamation and the osteological development of larval and juvenile gray angemsh Pomacanthus arcuatus (Pomacanthidae: Pisces). Bull. Mar. Sci., 56(3), 826–848.

    MathSciNet  Google Scholar 

  29. Kirschbaum, F., 1975. Untersuchungen uber dans Farbmuster der Zebrabarbe Brachydanio rerio (Cyprindae, Teleostei). Roux’s. Arch. Dev. Biol., 177, 129–152.

    Google Scholar 

  30. Kondo, S. & Asai, R., 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature, 376, 675–768.

    Article  Google Scholar 

  31. Kulesa, P.M., Cruywagen, G.C., Lubkin, S.R., Maini, P.K., Sneyd, J., Ferguson, M.W.J., & Murray, J.D., 1996. On a model mechanism for the spatial patterning of teeth primordia in the alligator. J. Theor. Biol., 180, 287–296.

    Article  Google Scholar 

  32. Kunisada, T., Yoshida, H., Yamazaki, H., Miyamoto, A., Hemmi, H., Nishimura, E., Shultz, L.D., Nishikawa, S., & Hayashi, S., 1998. Transgene expression of steel factor in the basal layer of the epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development, 125, 2915–2923.

    Google Scholar 

  33. Lengyel, I. & Epstein, I.R., 1991. Modelling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science, 251, 650–652.

    Article  Google Scholar 

  34. Lyons, M.J. & Harrison, L.G., 1991. A class of reaction-diffusion mechanisms which preferentially select striped patterns. Chem. Phys. Lett., 183, 158–164.

    Article  Google Scholar 

  35. Lyons, M.J. & Harrison, L.G., 1992. Stripe selection: An intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn., 195, 201–215.

    Article  Google Scholar 

  36. Mcclure, M., 1998. Chapters: Growth, Shape Change, and the development of pigment patterns in fishes of the genus Danio (Teleostei: cyprindae). Ph.D. thesis, Cornell University.

    Google Scholar 

  37. Meinhardt, H., 1989. Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development, supplement, 169–180.

    Google Scholar 

  38. Meinhardt, H., 1995. Dynamics of stripe formation. Nature, 376, 722–723.

    Article  Google Scholar 

  39. Meinhardt, H., 1998. The algorithmic beauty of sea shells. 2nd edn. Berlin, New-York: Springer.

    Google Scholar 

  40. Morelli, J.G., Yohn, J.J., Lyons, B., Murphy, R.C., & Norris, D.A., 1989. Leukotrines C4 and D4 as potent mitogens for cultured human neonatal melanocytes. J. Invest. Dermatol., 93, 719–722.

    Article  Google Scholar 

  41. Murray, J.D., 1979. A pattern formation mechanism and its application to mammalian coat markings. Lecture Notes in Biomathematics, Vol. 39. Berlin, Heidelberg, New York.: Springer.

    Google Scholar 

  42. Murray, J.D., 1981. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol, 88, 161–199.

    Article  Google Scholar 

  43. Murray, J.D., 1988. How the leopard got its spots. Sci. Am., 258, 80–87.

    Article  Google Scholar 

  44. Murray, J.D., 1993. Mathematical Biology. Second edition edn. Berlin, Heidelberg, New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  45. Nagorcka, B.N., 1992. From stripes to spots: Prepatterns which can be produced in the skin by a reaction-diffusion system. IMA. J. Math. Appl. Med. & Biol., 9, 249–267.

    Article  MATH  Google Scholar 

  46. Naitoh, T., Morioka, A., & Omura, Y., 1985. Adaptation of a common freshwater goby, yoshinobori, Rhinogobius brunneus Temminck et Schlegel to various backgrounds including those containing different sizes of black and white checkerboard squares. Zool. Sci., 2, 59.

    Google Scholar 

  47. Newth, D.R., 1956. On the neural crest of the lamprey embryo. J. Embryol. Exp. Morphol., 4, 358–375.

    Google Scholar 

  48. Olsson, L. & Löfberg, J., 1992. Pigment pattern formation in larval ambystomatid salamanders: Ambystoma tigrinum tigrinum. J. MorphoL, 211, 73–85.

    Article  Google Scholar 

  49. Ouyang, Q. & Swinney, H.L., 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature, 352, 610–612.

    Article  Google Scholar 

  50. Painter, K.J., 1997. Chemotaxis as a Mechanism for Morphogenesis. Ph.D. thesis, University of Oxford.

    Google Scholar 

  51. Painter, K.J., Othmer, H.G., & Maini, P.K., 1999. Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. USA, Vol. 96, 5549–5554.

    Article  Google Scholar 

  52. Parichy, D.M., 1996a. Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): The role of the lateral line sensory system and the evolution of pattern-forming mechanisms. Dev. Biol., 175, 265–282.

    Article  Google Scholar 

  53. Parichy, D.M., 1996b. When neural crest and placoses collide: Interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae). Dev. Biol., 175, 283–300.

    Article  Google Scholar 

  54. Parker, G.H., 1948. Animal Colour Changes and Their Neurohumours. Cambridge: CUP.

    Google Scholar 

  55. Rubin, J.S., Chan, A.M.L., Bottaro, D.P., Burgess, W.H., Taylor, W.G., Cech, A.C, Hirschfield, D.W., Wong, J., Miki, T., Finch, P.W., & Aaronson, S.T., 1991. A broad spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc. Natl Acad. Sci. USA, 88, 415–419.

    Article  Google Scholar 

  56. Schliwa, M., 1986. Biology of the Integument 2: Vertebrates. Berlin Heidelberg New York Tokyo: Springer-Verlag. Chap. Pigment Cells, pp. 65–77.

    Google Scholar 

  57. Shane, G.P. Du., 1934. The origin of pigment cells in Amphibia. Science, 80, 620–621.

    Google Scholar 

  58. Shewchuk, Jonathan Richard, 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. pp. 203–222 of: Lin, Ming C, & Manocha, Dinesh (eds.), Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, Vol. 1148. Springer-Verlag. Prom the First ACM Workshop on Applied Computational Geometry.

    Google Scholar 

  59. Sugimoto, M. 1993. Morphological colour changes in the medaka, Oryzias latipes, after prolonged background adaptation-I. Changes in the population and morphology of the melanophores. Comp. Biochem. Physiol., 104A, 513.

    Google Scholar 

  60. Tosney, K.W., 1992. A long distance cue from emerging dermis stimulates neural crest migration. Soc. Neurosci. Abs., 18, 1284.

    Google Scholar 

  61. Tucker, R.P. & Erickson, C.A., 1986. Pigment patternformation in Taricha torosa: The role of the extracellular matrix in controlling pigment cell migration and differentition. Dev. Biol., 118, 268–285.

    Article  Google Scholar 

  62. Turing, A.M., 1952. The chemical basis for morphogenesis. Phil. Trans. Roy. Soc. Lond. B., 237, 37–72.

    Article  Google Scholar 

  63. Varea, C, Aragon, J.L., & Barrio, R.A., 1997. Confined Turing patterns in growing systems. Phys. Rev. E., 56, 1250–1253.

    Article  Google Scholar 

  64. Wehrle-Haller, B. & Weston, J. A., 1995. Soluble and cell-bound forms of steel factor activity play distinct roles in melanovyte precurso dispersal and survival on the lateral neuarl crest migration pathway. Development, 121, 731–742.

    Google Scholar 

  65. Williams, D.E., Eisenman, J., Baird, A., Ruach, C, Ness, K. Van, March, C.J., Park, L.S., Martin., U., Mochizuki, D.Y., Boswell, H.S., Burgess, G.S., Cosman, D., & Lyman, S.D., 1990. Identification of a ligand for the c-kit proto-oncogene. Cell, 63, 167–174.

    Article  Google Scholar 

  66. Yada, Y., Higuchi, K., & Imokawa, G., 1991. Effects on endothelins on signal transduction and proliferation in human melanocytes. J. Biol. Chem., 266, 18352–18357.

    Google Scholar 

  67. Young, D.A., 1984. A local activator-inhibitor model of vertebrate skin patterns. Math. Biosci., 72, 51–58.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Painter, K.J. (2001). Models for Pigment Pattern Formation in the Skin of Fishes. In: Maini, P.K., Othmer, H.G. (eds) Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0133-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0133-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6524-5

  • Online ISBN: 978-1-4613-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics